Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 182: 107747, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36849095

RESUMO

Cladogenic diversification is often explained by referring to climatic oscillations and geomorphic shifts that cause allopatric speciation. In this regard, southern Africa retains a high level of landscape heterogeneity in vegetation, geology, and rainfall patterns. The legless skink subfamily Acontinae occurs broadly across the southern African subcontinent and therefore provides an ideal model group for investigating biogeographic patterns associated with the region. A robust phylogenetic study of the Acontinae with comprehensive coverage and adequate sampling of each taxon has been lacking up until now, resulting in unresolved questions regarding the subfamily's biogeography and evolution. In this study, we used multi-locus genetic markers (three mitochondrial and two nuclear) with comprehensive taxon coverage (all currently recognized Acontinae species) and adequate sampling (multiple specimens for most taxa) of each taxon to infer a phylogeny for the subfamily. The phylogeny retrieved four well-supported clades in Acontias and supported the monophyly of Typhlosaurus. Following the General Lineage Concept (GLC), many long-standing phylogenetic enigmas within Acontias occidentalis and the A. kgalagadi, A. lineatus and A. meleagris species complexes, and within Typhlosaurus were resolved. Our species delimitation analyses suggest the existence of hidden taxa in the A. occidentalis, A. cregoi and A. meleagris species groups, but also suggest that some currently recognized species in the A. lineatus and A. meleagris species groups, and within Typhlosaurus, should be synonymised. We also possibly encountered "ghost introgression" in A. occidentalis. Our inferred species tree revealed a signal of gene flow, which implies possible cross-over in some groups. Fossil evidence calibration dating results showed that the divergence between Typhlosaurus and Acontias was likely influenced by cooling and increasing aridity along the southwest coast in the mid-Oligocene caused by the opening of the Drake Passage. Further cladogenesis observed in Typhlosaurus and Acontias was likely influenced by Miocene cooling, expansion of open habitat, uplifting of the eastern Great Escarpment (GE), and variation in rainfall patterns, together with the effect of the warm Agulhas Current since the early Miocene, the development of the cold Benguela Current since the late Miocene, and their co-effects. The biogeographic pattern of the Acontinae bears close resemblance to that of other herpetofauna (e.g., rain frogs and African vipers) in southern Africa.


Assuntos
Especiação Genética , Lagartos , Animais , Filogenia , África Austral , Ecossistema , Lagartos/genética , Filogeografia
2.
BMC Evol Biol ; 20(1): 153, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33187474

RESUMO

BACKGROUND: Climatic and topographic changes function as key drivers in shaping genetic structure and cladogenic radiation in many organisms. Southern Africa has an exceptionally diverse tortoise fauna, harbouring one-third of the world's tortoise genera. The distribution of Psammobates tentorius (Kuhl, 1820) covers two of the 25 biodiversity hotspots in the world, the Succulent Karoo and Cape Floristic Region. The highly diverged P. tentorius represents an excellent model species for exploring biogeographic and radiation patterns of reptiles in Southern Africa. RESULTS: We investigated genetic structure and radiation patterns against temporal and spatial dimensions since the Miocene in the Psammobates tentorius species complex, using multiple types of DNA markers and niche modelling analyses. Cladogenesis in P. tentorius started in the late Miocene (11.63-5.33 Ma) when populations dispersed from north to south to form two geographically isolated groups. The northern group diverged into a clade north of the Orange River (OR), followed by the splitting of the group south of the OR into a western and an interior clade. The latter divergence corresponded to the intensification of the cold Benguela current, which caused western aridification and rainfall seasonality. In the south, tectonic uplift and subsequent exhumation, together with climatic fluctuations seemed responsible for radiations among the four southern clades since the late Miocene. We found that each clade occurred in a habitat shaped by different climatic parameters, and that the niches differed substantially among the clades of the northern group but were similar among clades of the southern group. CONCLUSION: Climatic shifts, and biome and geographic changes were possibly the three major driving forces shaping cladogenesis and genetic structure in Southern African tortoise species. Our results revealed that the cladogenesis of the P. tentorius species complex was probably shaped by environmental cooling, biome shifts and topographic uplift in Southern Africa since the late Miocene. The Last Glacial Maximum (LGM) may have impacted the distribution of P. tentorius substantially. We found the taxonomic diversify of the P. tentorius species complex to be highest in the Greater Cape Floristic Region. All seven clades discovered warrant conservation attention, particularly Ptt-B-Ptr, Ptt-A and Pv-A.


Assuntos
Especiação Genética , Tartarugas , África Austral , Animais , Ecossistema , Filogenia , Filogeografia , Tartarugas/genética
3.
Mol Phylogenet Evol ; 61(3): 823-33, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21907812

RESUMO

We investigated the evolutionary relationships among populations of two threatened Red Data Book fossorial skinks, Scelotes gronovii and Scelotes kasneri, along the Western Cape Coast of South Africa. The genus Scelotes shows considerable variation in limb and digit reduction. We sampled four localities purported to contain S. gronovii and seven of S. kasneri, encompassing all of each species' limited distribution. Each of these species lack forelimbs, and differ by the number of digits on the hind limbs, among other morphological characters; S. gronovii bears a single digit and S. kasneri bears two digits on the hind limbs. Sequence data obtained from three mtDNA (16S ribosomal RNA, cytochrome b, and nicotinamide adenine dinucleotide dehydrogenase 1 unit; 2035 bp ttl.) and two nuclear (dynein axonemal heavy chain 3 and the natural killer tumor recognition; 1848 bp ttl.) gene regions were used to reconstruct the evolutionary relationships among the two focal species and several other co-distributed species (Scelotes bipes, Scelotes montispectus, and Scelotes sexlineatus). Phylogenetic results (Bayesian and parsimony) revealed that several populations previously considered S. kasneri actually belong to other species, and others are paraphyletic with respect to one another. Additionally, populations of S. gronovii were also found to be paraphyletic, with populations south of the Berg River supported as sister to S. bipes, and populations north of the Berg River sister the remaining sampled species. Our results require a redefinition of S. sexlineatus to encompass populations morphologically convergent with S. kasneri and restrict the ranges of the already threatened S. kasneri and S. gronovii even further. The paraphyly of S. gronovii and the placement of each clade as sister to clades of species bearing two digits on the hind limbs suggests that digit loss has occurred at least twice in this group.


Assuntos
Evolução Biológica , Espécies em Perigo de Extinção , Variação Genética , Lagartos/anatomia & histologia , Lagartos/genética , Dedos do Pé/anatomia & histologia , Animais , Teorema de Bayes , Núcleo Celular/genética , Citocromos b/genética , DNA Mitocondrial/genética , Membro Anterior , Loci Gênicos/genética , Geografia , Filogenia , África do Sul , Especificidade da Espécie
5.
Mol Phylogenet Evol ; 34(3): 645-54, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15683935

RESUMO

Subspecies in the limbless, endemic African fossorial skink genus Acontias constitute ill-defined operational taxonomic units, consequently considerable systematic debate has lingered on the systematic diversity within Acontias. In the present study, the systematic affinities among acontine taxa are explored with the utility of partial sequence data from two mitochondrial gene loci (16S rRNA and cytochrome oxidase subunit 1 (COI)) for all taxa, while two additional loci (12S rRNA, cytochrome b) were used to investigate relationships within the Acontias meleagris complex. Phylogenetic results, derived from the combined analysis, revealed two monophyletic clades. Clade 1 is comprised of small-bodied skinks while clade 2 comprised the medium bodied skinks. Within clade 2 none of the traditionally recognized subspecies formed reciprocally monophyletic groups. Furthermore, constraining the topology and enforcing sister taxa relationships between the assumed subspecies, consistently recovered a topology that was statistically significant worse, indicating that the traditionally designated subspecies groupings probably represent invalid taxonomic units, thus clearly reflecting considerable discord with current taxonomy. The burrowing life style of these lizards has probably led to marked convergent evolution and constrained the development of diagnostic morphological characters among these species. Morphological similarities in color as well as scale architecture within Acontias are labile and highly homoplaseous and do not reflect the evolutionary history of the group. Taxonomic implications of these results are discussed.


Assuntos
Evolução Biológica , Lagartos/classificação , Lagartos/genética , Filogenia , Animais , Citocromos b/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Mitocôndrias/genética , RNA Ribossômico , RNA Ribossômico 16S
6.
Mol Phylogenet Evol ; 24(2): 315-23, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12144764

RESUMO

In the present study, relationships among three genera Acontias, Acontophiops, and Typhlosaurus, that comprise the South African limbless lizard subfamily Acontinae, were assessed with partial sequences of the 16S rRNA mitochondrial DNA gene. In addition, relationships within Acontias were further investigated using sequence data from the cytochrome oxidase I gene (COI). Maximum likelihood and maximum parsimony analyses of the 16S rRNA mtDNA data revealed that within this subfamily, Typhlosaurus is basal while Acontophiops and Acontias are sister taxa. Based on the 16S rRNA mtDNA data, the relationships within Acontias placed A. meleagris orientalis as the sister taxon of A. percivali tasmani, with A. m. orientalis lineacauda morph and A. m. meleagrus being the sister taxa to this group. The small-bodied skinks A. lineatus lineatus and A. l. tristis formed a monophyletic group, with the medium-bodied species A. gracilicauda gracilicauda being their sister taxon. Analyses of the COI gene for Acontias place A. m. orientalis as the sister taxon of A. p. tasmani with both A. meleagris meleagris and A. m. orientalis lineacauda being distinct. In contrast to the 16S rRNA mtDNA data, the COI data placed A. g. gracilicauda as the sister taxon to these medium-bodied species; while the subspecies status of the small-bodied taxa A. l. lineatus and A. l. tristis is reaffirmed. Combined analysis of both gene fragments for Acontias taxa recovered the same clades as found using only COI data. Systematic affinities in Acontias are discussed. These results indicate that Acontias is more species rich than previously thought.


Assuntos
Lagartos/fisiologia , Filogenia , Animais , DNA Mitocondrial , Complexo IV da Cadeia de Transporte de Elétrons/genética , Evolução Molecular , Extremidades , Lagartos/classificação , Modelos Biológicos , Dados de Sequência Molecular , RNA Ribossômico 16S , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA