Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 21(28): 285705, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20585156

RESUMO

The study of molecular heterojunction morphology is often complicated by the presence of a topographically complex substrate. On such substrates, it is difficult to definitively assign a topographic feature to a specific component. We propose a technique, based on the separation of features in reciprocal space (Fourier subtraction), to deconvolute a heterojunction surface into two real space images. The technique has been successfully applied to three classes of systems: (1) where the overlayer features are smaller than those of the substrate, such as with small molecule growth on polymer substrates (DIP/PEDOT:PSS); (2) where the overlayer features are larger than the substrate, such as with a polymer film in contact with a corrugated metal surface (P3HT/Al), and (3) where both the overlayer and substrate features are of the same size. The Fourier subtraction method extends the study of morphology to heterojunctions with realistic substrates, where the complex topography may previously have prevented a basic description of the specific features of each component in a heterojunction film.

2.
Chem Sci ; 6(3): 2050-2053, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29142673

RESUMO

Hydrogen is a promising energy vector for storing renewable energies: obtained from water-splitting, in electrolysers or photoelectrochemical cells, it can be turned back to electricity on demand in fuel cells (FCs). Proton exchange membrane (PEM) devices with low internal resistance, high compactness and stability are an attractive technology optimized over decades, affording fast start-up times and low operating temperatures. However, they rely on the powerful catalytic properties of noble metals such as platinum, while lower cost, more abundant materials would be needed for economic viability. Replacing these noble metals at both electrodes has long proven to be a difficult task, so far incompatible with PEM technologies. Here we take advantage of newly developed bio-inspired molecular H2 oxidation catalysts and noble metal-free O2-reducing materials, to fabricate a noble metal-free PEMFC, with an 0.74 V open circuit voltage and a 23 µW cm-2 output power under technologically relevant conditions. X-ray absorption spectroscopy measurements confirm that the catalysts are stable and retain their structure during turnover.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA