Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 168(1-2): 73-85.e11, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-27916274

RESUMO

The recent discovery that genetically modified α cells can regenerate and convert into ß-like cells in vivo holds great promise for diabetes research. However, to eventually translate these findings to human, it is crucial to discover compounds with similar activities. Herein, we report the identification of GABA as an inducer of α-to-ß-like cell conversion in vivo. This conversion induces α cell replacement mechanisms through the mobilization of duct-lining precursor cells that adopt an α cell identity prior to being converted into ß-like cells, solely upon sustained GABA exposure. Importantly, these neo-generated ß-like cells are functional and can repeatedly reverse chemically induced diabetes in vivo. Similarly, the treatment of transplanted human islets with GABA results in a loss of α cells and a concomitant increase in ß-like cell counts, suggestive of α-to-ß-like cell conversion processes also in humans. This newly discovered GABA-induced α cell-mediated ß-like cell neogenesis could therefore represent an unprecedented hope toward improved therapies for diabetes.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Células Secretoras de Glucagon/citologia , Células Secretoras de Insulina/citologia , Ácido gama-Aminobutírico/administração & dosagem , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Diferenciação Celular/efeitos dos fármacos , Diabetes Mellitus/induzido quimicamente , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Células Secretoras de Glucagon/efeitos dos fármacos , Humanos , Ilhotas Pancreáticas/citologia , Masculino , Camundongos , Proteínas do Tecido Nervoso , Ratos , Ratos Wistar , Ácido gama-Aminobutírico/farmacologia
2.
Physiol Rev ; 98(3): 1143-1167, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717931

RESUMO

Diabetes mellitus results from disturbed glucose homeostasis due to an absolute (type 1) or relative (type 2) deficiency of insulin, a peptide hormone almost exclusively produced by the beta cells of the endocrine pancreas in a tightly regulated manner. Current therapy only delays disease progression through insulin injection and/or oral medications that increase insulin secretion or sensitivity, decrease hepatic glucose production, or promote glucosuria. These drugs have turned diabetes into a chronic disease as they do not solve the underlying beta cell defects or entirely prevent the long-term complications of hyperglycemia. Beta cell replacement through islet transplantation is a more physiological therapeutic alternative but is severely hampered by donor shortage and immune rejection. A curative strategy should combine newer approaches to immunomodulation with beta cell replacement. Success of this approach depends on the development of practical methods for generating beta cells, either in vitro or in situ through beta cell replication or beta cell differentiation. This review provides an overview of human beta cell generation.


Assuntos
Técnicas de Cultura de Células , Células Secretoras de Insulina/fisiologia , Regeneração , Animais , Homeostase , Humanos , Células Secretoras de Insulina/transplante
3.
Cell ; 138(3): 449-62, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19665969

RESUMO

We have previously reported that the loss of Arx and/or Pax4 gene activity leads to a shift in the fate of the different endocrine cell subtypes in the mouse pancreas, without affecting the total endocrine cell numbers. Here, we conditionally and ectopically express Pax4 using different cell-specific promoters and demonstrate that Pax4 forces endocrine precursor cells, as well as mature alpha cells, to adopt a beta cell destiny. This results in a glucagon deficiency that provokes a compensatory and continuous glucagon+ cell neogenesis requiring the re-expression of the proendocrine gene Ngn3. However, the newly formed alpha cells fail to correct the hypoglucagonemia since they subsequently acquire a beta cell phenotype upon Pax4 ectopic expression. Notably, this cycle of neogenesis and redifferentiation caused by ectopic expression of Pax4 in alpha cells is capable of restoring a functional beta cell mass and curing diabetes in animals that have been chemically depleted of beta cells.


Assuntos
Diferenciação Celular , Células Secretoras de Glucagon/citologia , Proteínas de Homeodomínio/metabolismo , Células Secretoras de Insulina/citologia , Fatores de Transcrição Box Pareados/metabolismo , Pâncreas/citologia , Células-Tronco/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glucagon/deficiência , Ilhotas Pancreáticas/citologia , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Pâncreas/crescimento & desenvolvimento
4.
Cell ; 132(2): 197-207, 2008 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-18243096

RESUMO

Novel strategies in diabetes therapy would obviously benefit from the use of beta (beta) cell stem/progenitor cells. However, whether or not adult beta cell progenitors exist is one of the most controversial issues in today's diabetes research. Guided by the expression of Neurogenin 3 (Ngn3), the earliest islet cell-specific transcription factor in embryonic development, we show that beta cell progenitors can be activated in injured adult mouse pancreas and are located in the ductal lining. Differentiation of the adult progenitors is Ngn3 dependent and gives rise to all islet cell types, including glucose responsive beta cells that subsequently proliferate, both in situ and when cultured in embryonic pancreas explants. Multipotent progenitor cells thus exist in the pancreas of adult mice and can be activated cell autonomously to increase the functional beta cell mass by differentiation and proliferation rather than by self-duplication of pre-existing beta cells only.


Assuntos
Células Secretoras de Insulina/citologia , Pâncreas/citologia , Pâncreas/lesões , Células-Tronco/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/isolamento & purificação , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Núcleo Celular/metabolismo , Proliferação de Células , Expressão Gênica , Genes Reporter , Vetores Genéticos , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Insulina/análise , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Queratinas/metabolismo , Lentivirus/genética , Ligadura , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/isolamento & purificação , Proteínas do Tecido Nervoso/metabolismo , Técnicas de Cultura de Órgãos , Ductos Pancreáticos/cirurgia , Células-Tronco/metabolismo , Fatores de Tempo , beta-Galactosidase/metabolismo
5.
Am J Hum Genet ; 104(5): 985-989, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31006513

RESUMO

We report a recurrent CNOT1 de novo missense mutation, GenBank: NM_016284.4; c.1603C>T (p.Arg535Cys), resulting in a syndrome of pancreatic agenesis and abnormal forebrain development in three individuals and a similar phenotype in mice. CNOT1 is a transcriptional repressor that has been suggested as being critical for maintaining embryonic stem cells in a pluripotent state. These findings suggest that CNOT1 plays a critical role in pancreatic and neurological development and describe a novel genetic syndrome of pancreatic agenesis and holoprosencephaly.


Assuntos
Deficiências do Desenvolvimento/etiologia , Holoprosencefalia/etiologia , Doenças do Recém-Nascido/etiologia , Mutação , Doenças do Sistema Nervoso/etiologia , Pâncreas/anormalidades , Pancreatopatias/congênito , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Deficiências do Desenvolvimento/patologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Feminino , Holoprosencefalia/patologia , Humanos , Lactente , Recém-Nascido , Doenças do Recém-Nascido/patologia , Masculino , Camundongos , Camundongos Knockout , Doenças do Sistema Nervoso/patologia , Pâncreas/patologia , Pancreatopatias/etiologia , Pancreatopatias/patologia , Linhagem , Fenótipo , Homologia de Sequência , Síndrome
6.
Gut ; 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330784

RESUMO

OBJECTIVE: The aggressive basal-like molecular subtype of pancreatic ductal adenocarcinoma (PDAC) harbours a ΔNp63 (p40) gene expression signature reminiscent of a basal cell type. Distinct from other epithelia with basal tumours, ΔNp63+ basal cells reportedly do not exist in the normal pancreas. DESIGN: We evaluated ΔNp63 expression in human pancreas, chronic pancreatitis (CP) and PDAC. We further studied in depth the non-cancerous tissue and developed a three-dimensional (3D) imaging protocol (FLIP-IT, Fluorescence Light sheet microscopic Imaging of Paraffin-embedded or Intact Tissue) to study formalin-fixed paraffin-embedded samples at single cell resolution. Pertinent mouse models and HPDE cells were analysed. RESULTS: In normal human pancreas, rare ΔNp63+ cells exist in ducts while their prevalence increases in CP and in a subset of PDAC. In non-cancer tissue, ΔNp63+ cells are atypical KRT19+ duct cells that overall lack SOX9 expression while they do express canonical basal markers and pertain to a niche of cells expressing gastrointestinal stem cell markers. 3D views show that the basal cells anchor on the basal membrane of normal medium to large ducts while in CP they exist in multilayer dome-like structures. In mice, ΔNp63 is not found in adult pancreas nor in selected models of CP or PDAC, but it is induced in organoids from larger Sox9low ducts. In HPDE, ΔNp63 supports a basal cell phenotype at the expense of a classical duct cell differentiation programme. CONCLUSION: In larger human pancreatic ducts, basal cells exist. ΔNp63 suppresses duct cell identity. These cells may play an important role in pancreatic disease, including PDAC ontogeny, but are not present in mouse models.

7.
Diabetologia ; 62(11): 1961-1968, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31414144

RESUMO

Reciprocal signalling between the endothelium and the pancreatic epithelium is crucial for coordinated differentiation of the embryonic endocrine and exocrine pancreas. In the adult pancreas, islets depend on their dense capillary network to adequately respond to changes in plasma glucose levels. Vascular changes contribute to the onset and progression of both type 1 and type 2 diabetes. Impaired revascularisation of islets transplanted in individuals with type 1 diabetes is linked to islet graft failure and graft loss. This review summarises our understanding of the role of vascular endothelial growth factor-A (VEGF-A) and endothelial cells in beta cell development, physiology and disease. In addition, the therapeutic potential of modulating VEGF-A levels in beta and beta-like cells for transplantation is discussed.


Assuntos
Vasos Sanguíneos/metabolismo , Células Endoteliais/citologia , Células Secretoras de Insulina/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Glicemia/análise , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Progressão da Doença , Homeostase , Humanos , Células Secretoras de Insulina/transplante , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Neovascularização Fisiológica , Pâncreas/metabolismo , Ratos , Regeneração , Transdução de Sinais
8.
Diabetologia ; 61(8): 1804-1810, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29789879

RESUMO

AIMS/HYPOTHESIS: The initial avascular period following islet transplantation seriously compromises graft function and survival. Enhancing graft revascularisation to improve engraftment has been attempted through virus-based delivery of angiogenic triggers, but risks associated with viral vectors have hampered clinical translation. In vitro transcribed mRNA transfection circumvents these risks and may be used for improving islet engraftment. METHODS: Mouse and human pancreatic islet cells were transfected with mRNA encoding the angiogenic growth factor vascular endothelial growth factor A (VEGF-A) before transplantation under the kidney capsule in mice. RESULTS: At day 7 post transplantation, revascularisation of grafts transfected with Vegf-A (also known as Vegfa) mRNA was significantly higher compared with non-transfected or Gfp mRNA-transfected controls in mouse islet grafts (2.11- and 1.87-fold, respectively) (vessel area/graft area, mean ± SEM: 0.118 ± 0.01 [n = 3] in Vegf-A mRNA transfected group (VEGF) vs 0.056 ± 0.01 [n = 3] in no RNA [p < 0.05] vs 0.063 ± 0.02 [n = 4] in Gfp mRNA transfected group (GFP) [p < 0.05]); EndoC-bH3 grafts (2.85- and 2.48-fold. respectively) (0.085 ± 0.02 [n = 4] in VEGF vs 0.030 ± 0.004 [n = 4] in no RNA [p < 0.05] vs 0.034 ± 0.01 [n = 5] in GFP [p < 0.05]); and human islet grafts (3.17- and 3.80-fold, respectively) (0.048 ± 0.013 [n = 3] in VEGF vs 0.015 ± 0.0051 [n = 4] in no RNA [p < 0.01] vs 0.013 ± 0.0046 [n = 4] in GFP [p < 0.01]). At day 30 post transplantation, human islet grafts maintained a vascularisation benefit (1.70- and 1.82-fold, respectively) (0.049 ± 0.0042 [n = 8] in VEGF vs 0.029 ± 0.0052 [n = 5] in no RNA [p < 0.05] vs 0.027 ± 0.0056 [n = 4] in GFP [p < 0.05]) and a higher beta cell volume (1.64- and 2.26-fold, respectively) (0.0292 ± 0.0032 µl [n = 7] in VEGF vs 0.0178 ± 0.0021 µl [n = 5] in no RNA [p < 0.01] vs 0.0129 ± 0.0012 µl [n = 4] in GFP [p < 0.001]). CONCLUSIONS/INTERPRETATION: Vegf-A mRNA transfection before transplantation provides a promising and safe strategy to improve engraftment of islets and other cell-based implants.


Assuntos
Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/citologia , Neovascularização Fisiológica , RNA Mensageiro/genética , Transfecção , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Sobrevivência Celular , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/transplante , Transplante das Ilhotas Pancreáticas , Camundongos
9.
Diabetologia ; 60(6): 1051-1056, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28299380

RESUMO

AIMS/HYPOTHESIS: Endothelial-endocrine cell interactions and vascular endothelial growth factor (VEGF)-A signalling are deemed essential for maternal islet vascularisation, glucose control and beta cell expansion during mouse pregnancy. The aim of this study was to assess whether pregnancy-associated beta cell expansion was affected under conditions of islet hypovascularisation. METHODS: Soluble fms-like tyrosine kinase 1 (sFLT1), a VEGF-A decoy receptor, was conditionally overexpressed in maternal mouse beta cells from 1.5 to 14.5 days post coitum. Islet vascularisation, glycaemic control, beta cell proliferation, individual beta cell size and total beta cell volume were assessed in both pregnant mice and non-pregnant littermates. RESULTS: Conditional overexpression of sFLT1 in beta cells resulted in islet hypovascularisation and glucose intolerance in both pregnant and non-pregnant mice. In contrast to non-pregnant littermates, glucose intolerance in pregnant mice was transient. sFLT1 overexpression did not affect pregnancy-associated changes in beta cell proliferation, individual beta cell size or total beta cell volume. CONCLUSIONS/INTERPRETATION: Reduced intra-islet VEGF-A signalling results in maternal islet hypovascularisation and impaired glycaemic control but does not preclude beta cell expansion during mouse pregnancy.


Assuntos
Células Secretoras de Insulina/metabolismo , Animais , Proliferação de Células/genética , Proliferação de Células/fisiologia , Tamanho Celular , Feminino , Ilhotas Pancreáticas/metabolismo , Camundongos , Gravidez , Ratos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
Diabetologia ; 60(1): 134-142, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27704164

RESUMO

AIMS/HYPOTHESIS: Hypoxia in the initial days after islet transplantation leads to considerable loss of islet mass and contributes to disappointing outcomes in the clinical setting. The aim of the present study was to investigate whether co-transplantation of human non-endothelial bone marrow-derived multipotent adult progenitor cells (MAPCs), which are non-immunogenic and can secrete angiogenic growth factors during the initial days after implantation, could improve islet engraftment and survival. METHODS: Islets (150) were co-transplanted, with or without human MAPCs (2.5 × 105) as separate or composite pellets, under the kidney capsule of syngeneic alloxan-induced diabetic C57BL/6 mice. Blood glucose levels were frequently monitored and IPGTTs were carried out. Grafts and serum were harvested at 2 and 5 weeks after transplantation to assess outcome. RESULTS: Human MAPCs produced high amounts of angiogenic growth factors, including vascular endothelial growth factor, in vitro and in vivo, as demonstrated by the induction of neo-angiogenesis in the chorioallantoic membrane assay. Islet-human MAPC co-transplantation as a composite pellet significantly improved the outcome of islet transplantation as measured by the initial glycaemic control, diabetes reversal rate, glucose tolerance and serum C-peptide concentration compared with the outcome following transplantation of islets alone. Histologically, a higher blood vessel area and density in addition to a higher vessel/islet ratio were detected in recipients of islet-human MAPC composites. CONCLUSIONS/INTERPRETATION: The present data suggest that co-transplantation of mouse pancreatic islets with human MAPCs, which secrete high amounts of angiogenic growth factors, enhance islet graft revascularisation and subsequently improve islet graft function.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Adulto , Animais , Glicemia/fisiologia , Células Cultivadas , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neovascularização Fisiológica/fisiologia , Células-Tronco/fisiologia
11.
EMBO J ; 32(20): 2708-21, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24045232

RESUMO

Lgr5 marks adult stem cells in multiple adult organs and is a receptor for the Wnt-agonistic R-spondins (RSPOs). Intestinal, stomach and liver Lgr5(+) stem cells grow in 3D cultures to form ever-expanding organoids, which resemble the tissues of origin. Wnt signalling is inactive and Lgr5 is not expressed under physiological conditions in the adult pancreas. However, we now report that the Wnt pathway is robustly activated upon injury by partial duct ligation (PDL), concomitant with the appearance of Lgr5 expression in regenerating pancreatic ducts. In vitro, duct fragments from mouse pancreas initiate Lgr5 expression in RSPO1-based cultures, and develop into budding cyst-like structures (organoids) that expand five-fold weekly for >40 weeks. Single isolated duct cells can also be cultured into pancreatic organoids, containing Lgr5 stem/progenitor cells that can be clonally expanded. Clonal pancreas organoids can be induced to differentiate into duct as well as endocrine cells upon transplantation, thus proving their bi-potentiality.


Assuntos
Células-Tronco Adultas/fisiologia , Proliferação de Células , Pâncreas/citologia , Receptores Acoplados a Proteínas G/fisiologia , Trombospondinas/fisiologia , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Técnicas de Cultura de Células , Células Cultivadas , Embrião de Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos SCID , Camundongos Transgênicos , Modelos Biológicos , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Células-Tronco Multipotentes/fisiologia , Pâncreas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/genética , Trombospondinas/genética , Trombospondinas/metabolismo
12.
BMC Med Genet ; 18(1): 57, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28525974

RESUMO

BACKGROUND: Pancreatic agenesis is an extremely rare cause of neonatal diabetes mellitus and has enabled the discovery of several key transcription factors essential for normal pancreas and beta cell development. CASE PRESENTATION: We report a case of a Caucasian female with complete pancreatic agenesis occurring together with semilobar holoprosencephaly (HPE), a more common brain developmental disorder. Clinical findings were later confirmed by autopsy, which also identified agenesis of the gallbladder. Although the sequences of a selected set of genes related to pancreas agenesis or HPE were wild-type, the patient's phenotype suggests a genetic defect that emerges early in embryonic development of brain, gallbladder and pancreas. CONCLUSIONS: Developmental defects of the pancreas and brain can occur together. Identifying the genetic defect may identify a novel key regulator in beta cell development.


Assuntos
Anormalidades Congênitas/genética , Vesícula Biliar/anormalidades , Holoprosencefalia/genética , Pâncreas/anormalidades , Encéfalo/anormalidades , Encéfalo/embriologia , Anormalidades Congênitas/diagnóstico , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Feminino , Vesícula Biliar/embriologia , Holoprosencefalia/diagnóstico , Humanos , Recém-Nascido , Doenças do Recém-Nascido/diagnóstico , Doenças do Recém-Nascido/genética , Pâncreas/embriologia , Análise de Sequência de DNA , População Branca
13.
Diabetologia ; 59(9): 1948-58, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27318836

RESUMO

AIMS/HYPOTHESIS: When the beta cell mass or function declines beyond a critical point, hyperglycaemia arises. Little is known about the potential pathways involved in beta cell rescue. As two cytokines, epidermal growth factor (EGF) and ciliary neurotrophic factor (CNTF), restored a functional beta cell mass in mice with long-term hyperglycaemia by reprogramming acinar cells that transiently expressed neurogenin 3 (NGN3), the current study assesses the effect of these cytokines on the functional beta cell mass after an acute chemical toxic insult. METHODS: Glycaemia and insulin levels, pro-endocrine gene expression and beta cell origin, as well as the role of signal transducer and activator of transcription 3 (STAT3) signalling, were assessed in EGF+CNTF-treated mice following acute hyperglycaemia. RESULTS: The mice were hyperglycaemic 1 day following i.v. injection of the beta cell toxin alloxan, when the two cytokines were applied. One week later, 68.6 ± 4.6% of the mice had responded to the cytokine treatment and increased their insulin(+) cell number to 30% that of normoglycaemic control mice, resulting in restoration of euglycaemia. Although insulin(-) NGN3(+) cells appeared following acute EGF+CNTF treatment, genetic lineage tracing showed that the majority of the insulin(+) cells originated from pre-existing beta cells. Beta cell rescue by EGF+CNTF depends on glycaemia rather than on STAT3-induced NGN3 expression in acinar cells. CONCLUSIONS/INTERPRETATION: In adult mice, EGF+CNTF allows the rescue of beta cells in distress when treatment is given shortly after the diabetogenic insult. The rescued beta cells restore a functional beta cell mass able to control normal blood glucose levels. These findings may provide new insights into compensatory pathways activated early after beta cell loss.


Assuntos
Fator Neurotrófico Ciliar/uso terapêutico , Fator de Crescimento Epidérmico/uso terapêutico , Hiperglicemia/tratamento farmacológico , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Aloxano/toxicidade , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Glicemia/efeitos dos fármacos , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
Diabetologia ; 59(7): 1474-1479, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27130279

RESUMO

AIMS/HYPOTHESIS: Pw1 or paternally-expressed gene 3 (Peg3) encodes a zinc finger transcription factor that is widely expressed during mouse embryonic development and later restricted to multiple somatic stem cell lineages in the adult. The aim of the present study was to define Pw1 expression in the embryonic and adult pancreas and investigate its role in the beta cell cycle in Pw1 wild-type and mutant mice. METHODS: We analysed PW1 expression by immunohistochemistry in pancreas of nonpregant and pregnant mice and following injury by partial duct ligation. Its role in the beta cell cycle was studied in vivo using a novel conditional knockout mouse and in vitro by lentivirus-mediated gene knockdown. RESULTS: We showed that PW1 is expressed in early pancreatic progenitors at E9.5 but becomes progressively restricted to fully differentiated beta cells as they become established after birth and withdraw from the cell cycle. Notably, PW1 expression declines when beta cells are induced to proliferate and loss of PW1 function activates the beta cell cycle. CONCLUSIONS/INTERPRETATION: These results indicate that PW1 is a co-regulator of the beta cell cycle and can thus be considered a novel therapeutic target in diabetes.


Assuntos
Células Secretoras de Insulina/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Pâncreas/metabolismo , Animais , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Imuno-Histoquímica , Células Secretoras de Insulina/citologia , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pâncreas/embriologia
15.
Diabetologia ; 59(9): 1834-7, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27053238

RESUMO

The generation of beta(-like) cells to compensate for their absolute or relative shortage in type 1 and type 2 diabetes is an obvious therapeutic strategy. Patients first received grafts of donor islet cells over 25 years ago, but this procedure has not become routine in clinical practice because of a donor cell shortage and (auto)immune problems. Transplantation of differentiated embryonic and induced pluripotent stem cells may overcome some but not all the current limitations. Reprogramming exocrine cells towards functional beta(-like) cells would offer an alternative abundant and autologous source of beta(-like) cells. This review focuses on work by our research group towards achieving such a source of cells. It summarises a presentation given at the 'Can we make a better beta cell?' symposium at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Amin Ardestani and Kathrin Maedler, DOI: 10.1007/s00125-016-3892-9 , and by Heiko Lickert and colleagues, DOI: 10.1007/s00125-016-3949-9 ) and a commentary by the Session Chair, Shanta Persaud (DOI: 10.1007/s00125-016-3870-2 ).


Assuntos
Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Pâncreas/citologia , Animais , Diferenciação Celular/fisiologia , Humanos , Macrófagos/metabolismo , Fatores de Transcrição/metabolismo
16.
Eur J Immunol ; 45(5): 1482-93, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25645754

RESUMO

Pancreas injury by partial duct ligation (PDL) activates a healing response, encompassing ß-cell neogenesis and proliferation. Macrophages (MΦs) were recently shown to promote ß-cell proliferation after PDL, but they remain poorly characterized. We assessed myeloid cell diversity and the factors driving myeloid cell dynamics following acute pancreas injury by PDL. In naive and sham-operated pancreas, the myeloid cell compartment consisted mainly of two distinct tissue-resident MΦ types, designated MHC-II(lo) and MHC-II(hi) MΦs, the latter being predominant. MHC-II(lo) and MHC-II(hi) pancreas MΦs differed at the molecular level, with MHC-II(lo) MΦs being more M2-activated. After PDL, there was an early surge of Ly6C(hi) monocyte infiltration in the pancreas, followed by a transient MHC-II(lo) MΦ peak and ultimately a restoration of the MHC-II(hi) MΦ-dominated steady-state equilibrium. These intricate MΦ dynamics in PDL pancreas depended on monocyte recruitment by C-C chemokine receptor 2 and macrophage-colony stimulating factor receptor as well as on macrophage-colony stimulating factor receptor-dependent local MΦ proliferation. Functionally, MHC-II(lo) MΦs were more angiogenic. We further demonstrated that, at least in C-C chemokine receptor 2-KO mice, tissue MΦs, rather than Ly6C(hi) monocyte-derived MΦs, contributed to ß-cell proliferation. Together, our study fully characterizes the MΦ subsets in the pancreas and clarifies the complex dynamics of MΦs after PDL injury.


Assuntos
Macrófagos/imunologia , Macrófagos/patologia , Monócitos/imunologia , Monócitos/patologia , Pâncreas/imunologia , Pâncreas/lesões , Animais , Antígenos Ly/metabolismo , Movimento Celular/imunologia , Proliferação de Células , Microambiente Celular/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Ligadura , Ativação de Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células Mieloides/classificação , Células Mieloides/imunologia , Células Mieloides/patologia , Pâncreas/patologia , Ductos Pancreáticos/lesões , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Regeneração/imunologia
17.
Development ; 140(4): 751-64, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23325761

RESUMO

Pancreatic multipotent progenitor cells (MPCs) produce acinar, endocrine and duct cells during organogenesis, but their existence and location in the mature organ remain contentious. We used inducible lineage-tracing from the MPC-instructive gene Ptf1a to define systematically in mice the switch of Ptf1a(+) MPCs to unipotent proacinar competence during the secondary transition, their rapid decline during organogenesis, and absence from the mature organ. Between E11.5 and E15.5, we describe tip epithelium heterogeneity, suggesting that putative Ptf1a(+)Sox9(+)Hnf1ß(+) MPCs are intermingled with Ptf1a(HI)Sox9(LO) proacinar progenitors. In the adult, pancreatic duct ligation (PDL) caused facultative reactivation of multipotency factors (Sox9 and Hnf1ß) in Ptf1a(+) acini, which undergo rapid reprogramming to duct cells and longer-term reprogramming to endocrine cells, including insulin(+) ß-cells that are mature by the criteria of producing Pdx1(HI), Nkx6.1(+) and MafA(+). These Ptf1a lineage-derived endocrine/ß-cells are likely formed via Ck19(+)/Hnf1ß(+)/Sox9(+) ductal and Ngn3(+) endocrine progenitor intermediates. Acinar to endocrine/ß-cell transdifferentiation was enhanced by combining PDL with pharmacological elimination of pre-existing ß-cells. Thus, we show that acinar cells, without exogenously introduced factors, can regain aspects of embryonic multipotentiality under injury, and convert into mature ß-cells.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Multipotentes/fisiologia , Organogênese/fisiologia , Pâncreas/embriologia , Recuperação de Função Fisiológica/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Células Acinares/citologia , Animais , Pesos e Medidas Corporais , Técnicas de Introdução de Genes , Camundongos , Microscopia Confocal , Células-Tronco Multipotentes/metabolismo , Pâncreas/fisiologia , Tamoxifeno , Fatores de Tempo
18.
PLoS Genet ; 9(10): e1003934, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24204325

RESUMO

Recently, it was demonstrated that pancreatic new-born glucagon-producing cells can regenerate and convert into insulin-producing ß-like cells through the ectopic expression of a single gene, Pax4. Here, combining conditional loss-of-function and lineage tracing approaches, we show that the selective inhibition of the Arx gene in α-cells is sufficient to promote the conversion of adult α-cells into ß-like cells at any age. Interestingly, this conversion induces the continuous mobilization of duct-lining precursor cells to adopt an endocrine cell fate, the glucagon(+) cells thereby generated being subsequently converted into ß-like cells upon Arx inhibition. Of interest, through the generation and analysis of Arx and Pax4 conditional double-mutants, we provide evidence that Pax4 is dispensable for these regeneration processes, indicating that Arx represents the main trigger of α-cell-mediated ß-like cell neogenesis. Importantly, the loss of Arx in α-cells is sufficient to regenerate a functional ß-cell mass and thereby reverse diabetes following toxin-induced ß-cell depletion. Our data therefore suggest that strategies aiming at inhibiting the expression of Arx, or its molecular targets/co-factors, may pave new avenues for the treatment of diabetes.


Assuntos
Diferenciação Celular , Diabetes Mellitus Tipo 1/genética , Proteínas de Homeodomínio/genética , Células Secretoras de Insulina/metabolismo , Fatores de Transcrição/genética , Animais , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/terapia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Glucagon/genética , Glucagon/metabolismo , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Glucagon/patologia , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/biossíntese , Humanos , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Camundongos Transgênicos , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/biossíntese
19.
Diabetologia ; 57(7): 1420-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24759958

RESUMO

AIMS/HYPOTHESIS: IL-6 was recently shown to control alpha cell expansion. As beta cells expand following partial pancreatic-duct ligation (PDL) in adult mice, we investigated whether PDL also causes alpha cells to expand and whether IL-6 signalling is involved. As alpha cells can reprogramme to beta cells in a number of beta cell (re)generation models, we examined whether this phenomenon also exists in PDL pancreas. METHODS: Total alpha cell volume, alpha cell size and total glucagon content were evaluated in equivalent portions of PDL- and sham-operated mouse pancreases. Proliferation of glucagon(+) cells was assessed by expression of the proliferation marker Ki67. Inter-conversions between alpha and beta cells were monitored in transgenic mice with conditional cell-type-specific labelling. The role of IL-6 in regulating alpha cell proliferation was evaluated by in situ delivery of an IL-6-inactivating antibody. RESULTS: In response to PDL surgery, alpha cell volume in the ligated tissue was increased threefold, glucagon content fivefold and alpha cell size by 10%. Activation of alpha cell proliferation in PDL pancreas required IL-6 signalling. A minor fraction of alpha cells derived from beta cells, whereas no evidence for alpha to beta cell conversion was obtained. CONCLUSIONS/INTERPRETATION: In PDL-injured adult mouse pancreas, new alpha cells are generated mainly by IL-6-dependent self-duplication and seldom by reprogramming of beta cells.


Assuntos
Proliferação de Células/fisiologia , Células Secretoras de Glucagon/citologia , Interleucina-6/metabolismo , Ductos Pancreáticos/citologia , Animais , Tamanho Celular , Células Secretoras de Glucagon/metabolismo , Ligadura , Camundongos , Ductos Pancreáticos/metabolismo
20.
Diabetologia ; 57(1): 140-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24121626

RESUMO

AIMS/HYPOTHESIS: Vascular endothelial growth factor (VEGF) has been recognised by loss-of-function experiments as a pleiotropic factor with importance in embryonic pancreas development and postnatal beta cell function. Chronic, nonconditional overexpression of VEGF-A has a deleterious effect on beta cell development and function. We report, for the first time, a conditional gain-of-function study to evaluate the effect of transient VEGF-A overexpression by adult pancreatic beta cells on islet vasculature and beta cell proliferation and survival, under both normal physiological and injury conditions. METHODS: In a transgenicmouse strain, overexpressing VEGF-A in a doxycycline-inducible and beta cell-specific manner, we evaluated the ability of VEGF-A to affect islet vessel density, beta cell proliferation and protection of the adult beta cell mass from toxin-induced injury. RESULTS: Short-term VEGF-A overexpression resulted in islet hypervascularisation, increased beta cell proliferation and protection from toxin-mediated beta cell death, and thereby prevented the development of hyperglycaemia. Extended overexpression of VEGF-A led to impaired glucose tolerance, elevated fasting glycaemia and a decreased beta cell mass. CONCLUSIONS/INTERPRETATION: Overexpression of VEGF-A in beta cells time-dependently affects glycometabolic control and beta cell protection and proliferation. These data nourish further studies to examine the role of controlled VEGF delivery in (pre)clinical applications aimed at protecting and/or restoring the injured beta cell mass.


Assuntos
Diabetes Mellitus/prevenção & controle , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Proliferação de Células , Sobrevivência Celular/fisiologia , Diabetes Mellitus/metabolismo , Ilhotas Pancreáticas/irrigação sanguínea , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Transgênicos , Ratos , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA