Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Clin Invest ; 54(2): e14106, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37822060

RESUMO

BACKGROUND: Left ventricular stroke work index (LVSWI) and afterload-related cardiac performance (ACP) consider left ventricular (LV) afterload and could be better prognosticators in septic cardiomyopathy. However, their invasive nature prevents their routine clinical applications. This study aimed to investigate (1) whether a proposed speckle-tracking echocardiography parameter, Pressure-Strain Product (PSP), can non-invasively predict catheter-based LVSWI, ACP and serum lactate in an ovine model of septic cardiomyopathy; and (2) whether PSP can distinguish the sub-phenotypes of acute respiratory distress syndrome (ARDS) with or without sepsis-like conditions. METHODS: Sixteen sheep with ARDS were randomly assigned to either (1) sepsis-like (n = 8) or (2) non-sepsis-like (n = 8) group. Each ARDS and sepsis-like condition was induced by intravenous infusion of oleic acid and lipopolysaccharide, respectively. Pulmonary artery catheter-based LVSWI (the product of stroke work index, mean arterial pressure and .0136), ACP (the percentage of cardiac output measured to cardiac output predicted as normal) and serum lactate were measured simultaneously with transthoracic echocardiography. Two PSP indices were calculated by multiplying the mean arterial blood pressure and either global circumferential strain (PSPcirc) or radial strain (PSPrad). RESULTS: PSPcirc showed a significant correlation with LVSWI (r2 = .66, p < .001) and ACP (r2 = .82, p < .001) in the sepsis-like group. Although PSP could not distinguish subphenotypes, PSPcirc predicted LVSWI (AUC .86) and ACP (AUC .88), and PSPrad predicted serum lactate (AUC .75) better than LV ejection fraction, global circumferential and radial strain. CONCLUSIONS: A novel PSP has the potential to non-invasively predict catheter-based LVSWI and ACP, and was associated with serum lactate in septic cardiomyopathy.


Assuntos
Cardiomiopatias , Síndrome do Desconforto Respiratório , Sepse , Acidente Vascular Cerebral , Disfunção Ventricular Esquerda , Animais , Ovinos , Ecocardiografia , Volume Sistólico , Função Ventricular Esquerda , Lactatos , Disfunção Ventricular Esquerda/diagnóstico por imagem
2.
Eur J Clin Invest ; : e14263, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849326

RESUMO

BACKGROUND: Left ventricular stroke work index (LVSWI) and cardiac power index (CPI) account for the haemodynamic load of the left ventricle and are promising prognostic values in cardiogenic shock. However, accurately and non-invasively measuring these parameters during veno-arterial extracorporeal membrane oxygenation (V-A ECMO) is challenging and potentially biased by the extracorporeal circulation. This study aimed to investigate, in an ovine model of cardiogenic shock, whether Pressure-Strain Product (PSP), a novel speckle-tracking echocardiography parameter, (1) can correlate with pressure-volume catheter-based LVSWI and CPI, and (2) can be load-independent during the flow modification of V-A ECMO. METHODS: Nine Dorset-cross ewes (51 ± 4 kg) were included. After cardiogenic shock was induced, full support V-A ECMO (X L/min based on 60 mL/kg/min) commenced. At seven time points during 24-h observation, echocardiographic parameters as well as pressure-volume catheter-based LVSWI and CPI were simultaneously measured with X and following X-1 L/min of ECMO flow. PSP was calculated by multiplying global circumferential strain or global radial strain, and mean arterial pressure, for PSPcirc or PSPrad, respectively. RESULTS: PSPcirc showed a stronger correlation with LVSWI (correlation coefficient, CC = .360, p < .001) and CPI (CC = .283, p < .001) than other echocardiographic parameters. The predictability of PSPcirc for pressure-volume catheter-based LVSWI (AUC .82) and CPI (AUC .80) was also higher than other echocardiographic parameters. No statistically significant differences were identified between the two ECMO flow variations in PSPcirc (p = .558). CONCLUSIONS: A novel echocardiographic parameter, PSP, may non-invasively predict pressure-volume catheter-based LVSWI and CPI in a load-independent manner in a cardiogenic shock supported by V-A ECMO.

3.
Eur J Clin Invest ; : e14259, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845111

RESUMO

BACKGROUND: The commonest echocardiographic measurement, left ventricular ejection fraction, can not necessarily predict mortality of recipients following heart transplantation potentially due to afterload dependency. Afterload-independent left ventricular stroke work index (LVSWI) is alternatively recommended by the current guideline; however, pulmonary artery catheters are rarely inserted in organ donors in most jurisdictions. We propose a novel non-invasive echocardiographic parameter, Pressure-Strain Product (PSP), as a potential surrogate of catheter-based LVSWI. This study aimed to investigate if PSP could correlate with catheter-based LVSWI in an ovine model of brain stem death (BSD) donors. The association between PSP and myocardial mitochondrial function in the post-transplant hearts was also evaluated. METHODS: Thirty-one female sheep (weight 47 ± 5 kg) were divided into two groups; BSD (n = 15), and sham neurologic injury (n = 16). Echocardiographic parameters including global circumferential strain (GCS) and global radial strain (GRS) and pulmonary artery catheter-based LVSWI were simultaneously measured at 8-timepoints during 24-h observation. PSP was calculated as a product of GCS or GRS, and mean arterial pressure for PSPcirc or PSPrad, respectively. Myocardial mitochondrial function was evaluated following 6-h observation after heart transplantation. RESULTS: In BSD donor hearts, PSPcirc (n = 96, rho = .547, p < .001) showed the best correlation with LVSWI among other echocardiographic parameters. PSPcirc returned AUC of .825 to distinguish higher values of cardiomyocyte mitochondrial function (cut-off point; mean value of complex 1,2 O2 Flux) in post-transplant hearts, which was greater than other echocardiographic parameters. CONCLUSIONS: PSPcirc could be used as a surrogate of catheter-based LVSWI reflecting mitochondrial function.

4.
Crit Care Med ; 51(8): 1043-1053, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37010526

RESUMO

OBJECTIVES: Evidence of cerebrovascular complications in COVID-19 requiring venovenous extracorporeal membrane oxygenation (ECMO) is limited. Our study aims to characterize the prevalence and risk factors of stroke secondary to COVID-19 in patients on venovenous ECMO. DESIGN: We analyzed prospectively collected observational data, using univariable and multivariable survival modeling to identify risk factors for stroke. Cox proportional hazards and Fine-Gray models were used, with death and discharge treated as competing risks. SETTING: Three hundred eighty institutions in 53 countries in the COVID-19 Critical Care Consortium (COVID Critical) registry. PATIENTS: Adult COVID-19 patients who were supported by venovenous ECMO. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Five hundred ninety-five patients (median age [interquartile range], 51 yr [42-59 yr]; male: 70.8%) had venovenous ECMO support. Forty-three patients (7.2%) suffered strokes, 83.7% of which were hemorrhagic. In multivariable survival analysis, obesity (adjusted hazard ratio [aHR], 2.19; 95% CI, 1.05-4.59) and use of vasopressors before ECMO (aHR, 2.37; 95% CI, 1.08-5.22) were associated with an increased risk of stroke. Forty-eight-hour post-ECMO Pa co2 -pre-ECMO Pa co2 /pre-ECMO Pa co2 (relative ΔPa co2 ) of negative 26% and 48-hour post-ECMO Pa o2 -pre-ECMO Pa o2 /pre-ECMO Pa o2 (relative ΔPa o2 ) of positive 24% at 48 hours of ECMO initiation were observed in stroke patients in comparison to relative ΔPa co2 of negative 17% and relative ΔPa o2 of positive 7% in the nonstroke group. Patients with acute stroke had a 79% in-hospital mortality compared with 45% mortality for stroke-free patients. CONCLUSIONS: Our study highlights the association of obesity and pre-ECMO vasopressor use with the development of stroke in COVID-19 patients on venovenous ECMO. Also, the importance of relative decrease in Pa co2 and moderate hyperoxia within 48 hours after ECMO initiation were additional risk factors.


Assuntos
COVID-19 , Oxigenação por Membrana Extracorpórea , Acidente Vascular Cerebral , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dióxido de Carbono , COVID-19/complicações , COVID-19/epidemiologia , COVID-19/terapia , Oxigenação por Membrana Extracorpórea/efeitos adversos , Obesidade , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/etiologia
5.
Artif Organs ; 47(7): 1122-1132, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36932963

RESUMO

OBJECTIVE: Pulsatile-flow veno-arterial extracorporeal membrane oxygenation (V-A ECMO) has shown encouraging results for microcirculation resuscitation and left ventricle unloading in patients with refractory cardiogenic shock. We aimed to comprehensively assess different V-A ECMO parameters and their contribution to hemodynamic energy production and transfer through the device circuit. METHODS: We used the i-cor® ECMO circuit, which composed of Deltastream DP3 diagonal pump and i-cor® console (Xenios AG), the Hilite 7000 membrane oxygenator (Xenios AG), venous and arterial tubing and a 1 L soft venous pseudo-patient reservoir. Four different arterial cannulae (Biomedicus 15 and 17 Fr, Maquet 15 and 17 Fr) were used. For each cannula, 192 different pulsatile modes were investigated by adjusting flow rate, systole/diastole ratio, pulsatile amplitudes and frequency, yielding 784 unique conditions. A dSpace data acquisition system was used to collect flow and pressure data. RESULTS: Increasing flow rates and pulsatile amplitudes were associated with significantly higher hemodynamic energy production (both p < 0.001), while no significant associations were seen while adjusting systole-to-diastole ratio (p = 0.73) or pulsing frequency (p = 0.99). Arterial cannula represents the highest resistance to hemodynamic energy transfer with 32%-59% of total hemodynamic energy generated being lost within, depending on pulsatile flow settings used. CONCLUSIONS: Herein, we presented the first study to compare hemodynamic energy production with all pulsatile ECLS pump settings and their combinations and widely used yet previously unexamined four different arterial ECMO cannula. Only increased flow rate and amplitude increase hemodynamic energy production as single factors, whilst other factors are relevant when combined.


Assuntos
Oxigenação por Membrana Extracorpórea , Humanos , Cânula , Modelos Cardiovasculares , Desenho de Equipamento , Oxigenadores de Membrana , Hemodinâmica , Fluxo Pulsátil
6.
Perfusion ; : 2676591231168285, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36988317

RESUMO

INTRODUCTION: Iliopsoas haematoma (IPH) during extracorporeal membrane oxygenation (ECMO) is a rare bleeding complication that can be fatal due to its progression to abdominal compartment syndrome, but its incidence and risk factors are not well known. We have previously reported an IPH incidence rate of 16% in Japan. Among possible reasons for this high incidence, ethnicity has been hypothesised to play a role. Therefore, we used an international multi-centre cohort registry to test this hypothesis by determining the incidence rate of IPH. METHODS: This study was performed using the COVID-19 Critical Care Consortium database, conducted in 30 countries across five continents between 3 January 2020, and 20 June 2022. RESULTS: Overall, 1102 patients received ECMO for COVID-19-related acute respiratory distress syndrome. Of them, only seven were reported to have IPH, indicating an incidence rate of 0.64%, with comparable rates between the countries. The IPH group tended to have a higher mortality rate (71.4%) than the non-IPH group (51%). CONCLUSIONS: Overall incidence of IPH in the studied COVID-19 ECMO cohort was 0.64%. Most cases were reported from Japan, Belgium, and Italy. In our study, this rare complication did not appear to be confined to Asian patients. Due to the high fatality rate, awareness about the occurrence of IPH should be recognised.

7.
Perfusion ; : 2676591231156487, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36753684

RESUMO

Introduction: Obesity is associated with a worse prognosis in COVID-19 patients with acute respiratory distress syndrome (ARDS). Veno-venous (V-V) Extracorporeal Membrane Oxygenation (ECMO) can be a rescue option, however, the direct impact of morbid obesity in this select group of patients remains unclear.Methods: This is an observational study of critically ill adults with COVID-19 and ARDS supported by V-V ECMO. Data are from 82 institutions participating in the COVID-19 Critical Care Consortium international registry. Patients were admitted between 12 January 2020 to 27 April 2021. They were stratified based on Body Mass Index (BMI) at 40 kg/m2. The endpoint was survival to hospital discharge.Results: Complete data available on 354 of 401 patients supported on V-V ECMO. The characteristics of the high BMI (>40 kg/m2) and lower BMI (≤40 kg/m2) groups were statistically similar. However, the 'high BMI' group were comparatively younger and had a lower APACHE II score. Using survival analysis, older age (Hazard Ratio, HR 1.49 per-10-years, CI 1.25-1.79) and higher BMI (HR 1.15 per-5 kg/m2 increase, CI 1.03-1.28) were associated with a decreased patient survival. A safe BMI threshold above which V-V ECMO would be prohibitive was not apparent and instead, the risk of an adverse outcome increased linearly with BMI.Conclusion: In COVID-19 patients with severe ARDS who require V-V ECMO, there is an increased risk of death associated with age and BMI. The risk is linear and there is no BMI threshold beyond which the risk for death greatly increases.

8.
Crit Care Med ; 50(2): 275-285, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34582415

RESUMO

OBJECTIVES: The study investigated the impact of prone positioning during venovenous extracorporeal membrane oxygenation support for coronavirus disease 2019 acute respiratory failure on the patient outcome. DESIGN: An observational study of venovenous extracorporeal membrane oxygenation patients. We used a multistate survival model to compare the outcomes of patients treated with or without prone positioning during extracorporeal membrane oxygenation, which incorporates the dynamic nature of prone positioning and adjusts for potential confounders. SETTING: Seventy-two international institutions participating in the Coronavirus Disease 2019 Critical Care Consortium international registry. PATIENTS: Coronavirus disease 2019 patients who were supported by venovenous extracorporeal membrane oxygenation during the study period. INTERVENTION: None. MEASUREMENTS AND MAIN RESULTS: There were 232 coronavirus disease 2019 patients at 72 participating institutions who were supported with venovenous extracorporeal membrane oxygenation during the study period from February 16, 2020, to October 31, 2020. Proning was used in 176 patients (76%) before initiation of extracorporeal membrane oxygenation and in 67 patients (29%) during extracorporeal membrane oxygenation. Survival to hospital discharge was 33% in the extracorporeal membrane oxygenation prone group versus 22% in the extracorporeal membrane oxygenation supine group. Prone positioning during extracorporeal membrane oxygenation support was associated with reduced mortality (hazard ratio, 0.31; 95% CI, 0.14-0.68). CONCLUSIONS: Our study highlights that prone positioning during venovenous extracorporeal membrane oxygenation support for refractory coronavirus disease 2019-related acute respiratory distress syndrome is associated with reduced mortality. Given the observational nature of the study, a randomized controlled trial of prone positioning on venovenous extracorporeal membrane oxygenation is needed to confirm these findings.


Assuntos
COVID-19/terapia , Oxigenação por Membrana Extracorpórea , Posicionamento do Paciente/métodos , Decúbito Ventral , Síndrome do Desconforto Respiratório/terapia , SARS-CoV-2 , Adulto , COVID-19/complicações , Feminino , Mortalidade Hospitalar , Humanos , Masculino , Pessoa de Meia-Idade , Alta do Paciente , Probabilidade , Síndrome do Desconforto Respiratório/etiologia
9.
Perfusion ; : 2676591211056567, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35038287

RESUMO

INTRODUCTION: Peripheral veno-arterial extracorporeal membrane oxygenation (VA ECMO) creates a retrograde flow along the aorta competing with the left ventricle (LV) in the so-called 'mixing zone' (MZ). Detecting it is essential to understand which of the LV or the ECMO flow perfuses the upper body - particularly the brain and the coronary arteries - in case of differential hypoxemia (DH). METHODS: We described a mock circulation loop (MCL) that enabled experimental research on DH. We recreated the three clinical situations relevant to clinicians: where the brain is either totally perfused by the ECMO or the LV or both. In a second step, we used this model to investigate two scenarios to diagnose DH: (i) pulse pressure and (ii) thermodilution via injection of cold saline in the ECMO circuit. RESULTS: The presented MCL was able to reproduce the three relevant mixing zones within the aortic arch, thus allowing to study DH. Pulse pressure was unable to detect location of the MZ. However, the thermodilution method was able to detect whether the brain was totally perfused by the ECMO or not. CONCLUSION: We validated an in-vitro differential hypoxemia model of cardiogenic shock supported by VA ECMO. This MCL could be used as an alternative to animal studies for research scenarios.

10.
Crit Care ; 24(1): 301, 2020 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-32505217

RESUMO

The spread of coronavirus disease 2019 (COVID-19) continues to grow exponentially in most countries, posing an unprecedented burden on the healthcare sector and the world economy. Previous respiratory virus outbreaks, such as severe acute respiratory syndrome (SARS), pandemic H1N1 and Middle East respiratory syndrome (MERS), have provided significant insights into preparation and provision of intensive care support including extracorporeal membrane oxygenation (ECMO). Many patients have already been supported with ECMO during the current COVID-19 pandemic, and it is likely that many more may receive ECMO support, although, at this point, the role of ECMO in COVID-19-related cardiopulmonary failure is unclear. Here, we review the experience with the use of ECMO in the past respiratory virus outbreaks and discuss potential role for ECMO in COVID-19.


Assuntos
Infecções por Coronavirus/terapia , Surtos de Doenças , Oxigenação por Membrana Extracorpórea , Pneumonia Viral/terapia , COVID-19 , Infecções por Coronavirus/epidemiologia , Humanos , Pandemias , Pneumonia Viral/epidemiologia
17.
Sci Rep ; 14(1): 2162, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272980

RESUMO

Mortality and morbidity of Acute Respiratory Distress Syndrome (ARDS) are largely unaltered. A possible new approach to treatment of ARDS is offered by the discovery of inflammatory subphenotypes. In an ovine model of ARDS phenotypes, matching key features of the human subphenotypes, we provide an imaging characterization using computer tomography (CT). Nine animals were randomized into (a) OA (oleic acid, hypoinflammatory; n = 5) and (b) OA-LPS (oleic acid and lipopolysaccharides, hyperinflammatory; n = 4). 48 h after ARDS induction and anti-inflammatory treatment, CT scans were performed at high (H) and then low (L) airway pressure. After CT, the animals were euthanized and lung tissue was collected. OA-LPS showed a higher air fraction and OA a higher tissue fraction, resulting in more normally aerated lungs in OA-LPS in contrast to more non-aerated lung in OA. The change in lung and air volume between H and L was more accentuated in OA-LPS, indicating a higher recruitment potential. Strain was higher in OA, indicating a higher level of lung damage, while the amount of lung edema and histological lung injury were largely comparable. Anti-inflammatory treatment might be beneficial in terms of overall ventilated lung portion and recruitment potential, especially in the OA-LPS group.


Assuntos
Lipopolissacarídeos , Síndrome do Desconforto Respiratório , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Pulmão/patologia , Ácido Oleico/farmacologia , Fenótipo , Síndrome do Desconforto Respiratório/patologia , Ovinos , Carneiro Doméstico , Tomografia
18.
ASAIO J ; 69(5): e167-e180, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36976324

RESUMO

Refractory cardiogenic shock is increasingly being treated with veno-arterial extracorporeal membrane oxygenation (V-A ECMO), without definitive proof of improved clinical outcomes. Recently, pulsatile V-A ECMO has been developed to address some of the shortcomings of contemporary continuous-flow devices. To describe current pulsatile V-A ECMO studies, we conducted a systematic review of all preclinical studies in this area. We adhered to PRISMA and Cochrane guidelines for conducting systematic reviews. The literature search was performed using Science Direct, Web of Science, Scopus, and PubMed databases. All preclinical experimental studies investigating pulsatile V-A ECMO and published before July 26, 2022 were included. We extracted data relating to the 1) ECMO circuits, 2) pulsatile blood flow conditions, 3) key study outcomes, and 4) other relevant experimental conditions. Forty-five manuscripts of pulsatile V-A ECMO were included in this review detailing 26 in vitro , two in silico , and 17 in vivo experiments. Hemodynamic energy production was the most investigated outcome (69%). A total of 53% of studies used a diagonal pump to achieve pulsatile flow. Most literature on pulsatile V-A ECMO focuses on hemodynamic energy production, whereas its potential clinical effects such as favorable heart and brain function, end-organ microcirculation, and decreased inflammation remain inconclusive and limited.


Assuntos
Oxigenação por Membrana Extracorpórea , Humanos , Choque Cardiogênico/terapia , Hemodinâmica/fisiologia , Fluxo Pulsátil/fisiologia , Inflamação
19.
Front Cardiovasc Med ; 10: 1030864, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324632

RESUMO

The right ventricle (RV) has a critical role in hemodynamics and right ventricular failure (RVF) often leads to poor clinical outcome. Despite the clinical importance of RVF, its definition and recognition currently rely on patients' symptoms and signs, rather than on objective parameters from quantifying RV dimensions and function. A key challenge is the geometrical complexity of the RV, which often makes it difficult to assess RV function accurately. There are several assessment modalities currently utilized in the clinical settings. Each diagnostic investigation has both advantages and limitations according to its characteristics. The purpose of this review is to reflect on the current diagnostic tools, consider the potential technological advancements and propose how to improve the assessment of right ventricular failure. Advanced technique such as automatic evaluation with artificial intelligence and 3-dimensional assessment for the complex RV structure has a potential to improve RV assessment by increasing accuracy and reproducibility of the measurements. Further, noninvasive assessments for RV-pulmonary artery coupling and right and left ventricular interaction are also warranted to overcome the load-related limitations for the accurate evaluation of RV contractile function. Future studies to cross-validate the advanced technologies in various populations are required.

20.
Sci Rep ; 13(1): 4002, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899029

RESUMO

Differential hypoxaemia (DH) is common in patients supported by femoral veno-arterial extracorporeal membrane oxygenation (V-A ECMO) and can cause cerebral hypoxaemia. To date, no models have studied the direct impact of flow on cerebral damage. We investigated the impact of V-A ECMO flow on brain injury in an ovine model of DH. After inducing severe cardiorespiratory failure and providing ECMO support, we randomised six sheep into two groups: low flow (LF) in which ECMO was set at 2.5 L min-1 ensuring that the brain was entirely perfused by the native heart and lungs, and high flow (HF) in which ECMO was set at 4.5 L min-1 ensuring that the brain was at least partially perfused by ECMO. We used invasive (oxygenation tension-PbTO2, and cerebral microdialysis) and non-invasive (near infrared spectroscopy-NIRS) neuromonitoring, and euthanised animals after five hours for histological analysis. Cerebral oxygenation was significantly improved in the HF group as shown by higher PbTO2 levels (+ 215% vs - 58%, p = 0.043) and NIRS (67 ± 5% vs 49 ± 4%, p = 0.003). The HF group showed significantly less severe brain injury than the LF group in terms of neuronal shrinkage, congestion and perivascular oedema (p < 0.0001). Cerebral microdialysis values in the LF group all reached the pathological thresholds, even though no statistical difference was found between the two groups. Differential hypoxaemia can lead to cerebral damage after only a few hours and mandates a thorough neuromonitoring of patients. An increase in ECMO flow was an effective strategy to reduce such damages.


Assuntos
Lesões Encefálicas , Oxigenação por Membrana Extracorpórea , Animais , Lesões Encefálicas/complicações , Oxigenação por Membrana Extracorpórea/efeitos adversos , Hipóxia/complicações , Modelos Teóricos , Ovinos , Choque Cardiogênico/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA