RESUMO
DAT2 is a member of the diacyl trehalose family (DAT) of antigenic glycolipids located in the mycomembrane of Mycobacterium tuberculosis (Mtb). Recently it was shown that the molecular structure of DAT2 had been incorrectly assigned, but the correct structure remained elusive. Herein, the correct molecular structure of DAT2 and its methyl-branched acyl substituent mycolipanolic acid is determined. For this, four different stereoisomers of mycolipanolic acid were prepared in a stereoselective and unified manner, and incorporated into DAT2. A rigorous comparison of the four isomers to the DAT isolated from Mtb H37Rv by NMR, HPLC, GC, and mass spectrometry allowed a structural revision of mycolipanolic acid and DAT2. Activation of the macrophage inducible Ca2+-dependent lectin receptor (Mincle) with all four stereoisomers shows that the natural stereochemistry of mycolipanolic acid / DAT2 provides the strongest activation, which indicates its high antigenicity and potential application in serodiagnostics and vaccine adjuvants.
Assuntos
Glicolipídeos , Mycobacterium tuberculosis , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/química , Glicolipídeos/química , Glicolipídeos/síntese química , Glicolipídeos/imunologia , Estereoisomerismo , Estrutura MolecularRESUMO
Macrocyclic peptides (MPs) have positioned themselves as a privileged class of compounds for the discovery of therapeutics and development of chemical probes. Aided by the development of powerful selection strategies, high-affinity binders against biomolecular targets can readily be elicited from massive, genetically encoded libraries by affinity selection. For example, in phage display, MPs are accessed on the surface of whole bacteriophages via disulfide formation, the use of (symmetric) crosslinkers, or the incorporation of non-canonical amino acids. To facilitate a straightforward cyclization of linear precursors with asymmetric molecular scaffolds, which are often found at the core of naturally occurring MPs, we report an efficient two-step strategy to access MPs via the programmed modification of a unique cysteine residue and an N-terminal amine. We demonstrate that this approach yields MPs featuring asymmetric cyclization units from both synthetic peptides and when linear precursors are appended onto a phage-coat protein. Finally, we showcase that our cyclization strategy is compatible with traditional phage-display protocols and enables the selection of MP binders against a model target protein from naïve libraries. By enabling the incorporation of non-peptidic moieties that (1) can serve as cyclization units, (2) provide interactions for binding, and/or (3) tailor pharmacological properties, our head-to-side-chain cyclization strategy provides access to a currently under-explored chemical space for the development of chemical probes and therapeutics.
Assuntos
Bacteriófagos , Biblioteca de Peptídeos , Bacteriófagos/metabolismo , Ciclização , Dissulfetos/metabolismo , Peptídeos/químicaRESUMO
Metabolic heterogeneity between individual cells of a population harbors significant challenges for fundamental and applied research. Identifying metabolic heterogeneity and investigating its emergence require tools to zoom into metabolism of individual cells. While methods exist to measure metabolite levels in single cells, we lack capability to measure metabolic flux, i.e., the ultimate functional output of metabolic activity, on the single-cell level. Here, combining promoter engineering, computational protein design, biochemical methods, proteomics, and metabolomics, we developed a biosensor to measure glycolytic flux in single yeast cells. Therefore, drawing on the robust cell-intrinsic correlation between glycolytic flux and levels of fructose-1,6-bisphosphate (FBP), we transplanted the B. subtilis FBP-binding transcription factor CggR into yeast. With the developed biosensor, we robustly identified cell subpopulations with different FBP levels in mixed cultures, when subjected to flow cytometry and microscopy. Employing microfluidics, we were also able to assess the temporal FBP/glycolytic flux dynamics during the cell cycle. We anticipate that our biosensor will become a valuable tool to identify and study metabolic heterogeneity in cell populations.
Assuntos
Frutosedifosfatos/análise , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Análise de Célula Única/métodos , Técnicas Biossensoriais , Engenharia Genética , Glicólise , Metabolômica , Técnicas Analíticas Microfluídicas , Proteômica , Proteínas Repressoras/genética , Saccharomyces cerevisiae/metabolismoRESUMO
Galactooligosaccharides (GOS) are prebiotic compounds synthesized from lactose using bacterial enzymes and are known to stimulate growth of beneficial bifidobacteria in the human colon. Bacteroides thetaiotaomicron is a prominent human colon commensal bacterial species that hydrolyzes GOS using an extracellular Glycosyl Hydrolase (GH) family GH53 endo-galactanase enzyme (BTGH53), releasing galactose-based products for growth. Here we dissect the molecular basis for GOS activity of this B. thetaiotaomicron GH53 endo-galactanase. Elucidation of its X-ray crystal structure revealed that BTGH53 has a relatively open active site cleft which was not observed with the bacterial enzyme from Bacillus licheniformis (BLGAL). BTGH53 acted on GOS with degree of polymerization ≤3 and therefore more closely resembles activity of fungal GH53 enzymes (e.g. Aspergillus aculeatus AAGAL and Meripileus giganteus MGGAL). Probiotic lactobacilli that lack galactan utilization systems constitute a group of bacteria with relevance for a healthy (infant) gut. The strains tested were unable to use GOSâ¯≥â¯DP3. However, they completely consumed GOS in the presence of BTGH53, resulting in clear stimulation of their extent of growth. The extracellular BTGH53 enzyme thus may play an important role in carbohydrate metabolism in complex microbial environments such as the human colon. It also may find application for the development of synergistic synbiotics.
Assuntos
Bacteroides thetaiotaomicron/enzimologia , Glicosídeo Hidrolases/química , Prebióticos , Galactose/química , Glicosídeo Hidrolases/fisiologia , Humanos , Oligossacarídeos/químicaRESUMO
ω-Transaminases are enzymes that can introduce an amino group in industrially interesting compounds. We determined crystal structures of two (S)-selective ω-transaminases, one from Arthrobacter sp. (Ars-ωTA) and one from Bacillus megaterium (BM-ωTA), which have 95% identical sequences but somewhat different activity profiles. Substrate profiling measurements using a range of (R)- and (S)-substrates showed that both enzymes have a preference for substrates with large, flat cyclic side groups, for which the activity of BM-ωTA is generally somewhat higher. BM-ωTA has a preference for (S)-3,3-dimethyl-2-butylamine significantly stronger than that of Ars-ωTA, as well as a weaker enantiopreference for 1-cyclopropylethylamine. The crystal structures showed that, as expected for (S)-selective transaminases, both enzymes have the typical transaminase type I fold and have spacious active sites to accommodate largish substrates. A structure of BM-ωTA with bound (R)-α-methylbenzylamine explains the enzymes' preference for (S)-substrates. Site-directed mutagenesis experiments revealed that the presence of a tyrosine, instead of a cysteine, at position 60 increases the relative activities on several small substrates. A structure of Ars-ωTA with bound l-Ala revealed that the Arg442 side chain has been repositioned to bind the l-Ala carboxylate. Compared to the arginine switch residue in other transaminases, Arg442 is shifted by six residues in the amino acid sequence, which appears to be a consequence of extra loops near the active site that narrow the entrance to the active site.
Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Transaminases/química , Transaminases/metabolismo , Substituição de Aminoácidos , Arthrobacter/enzimologia , Arthrobacter/genética , Bacillus megaterium/enzimologia , Bacillus megaterium/genética , Proteínas de Bactérias/genética , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Especificidade por Substrato , Transaminases/genéticaRESUMO
The last decade has witnessed the reawakening of cancer metabolism as a therapeutic target. In particular, inhibition of pyruvate dehydrogenase kinase (PDK) holds remarkable promise. Dichloroacetic acid (DCA), currently undergoing clinical trials, is a unique PDK inhibitor in which it binds to the allosteric pyruvate site of the enzyme. However, the safety of DCA as a drug is compromised by its neurotoxicity, whereas its usefulness as an investigative tool is limited by the high concentrations required to exert observable effects in cell culture. Herein, we report the identification - by making use of saturation-transfer difference NMR spectroscopy, enzymatic assays and computational methods - of furoate and thenoate derivatives as allosteric pyruvate-site-binding PDK2 inhibitors. This work substantiates the pyruvate regulatory pocket as a druggable target.
Assuntos
Furanos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Ácido Pirúvico/metabolismo , Tiofenos/farmacologia , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Furanos/síntese química , Furanos/química , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/química , Piruvato Desidrogenase Quinase de Transferência de Acetil , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/químicaRESUMO
Aptamers are oligonucleotide ligands, either RNA or ssDNA, selected for high-affinity binding to molecular targets, such as small organic molecules, proteins or whole microorganisms. While reports of new aptamers are numerous, characterization of their specific interaction is often restricted to the affinity of binding (K(D)). Over the years, crystal structures of aptamer-protein complexes have only scarcely become available. Here we describe some relevant technical issues about the process of crystallizing aptamer-protein complexes and highlight some biochemical details on the molecular basis of selected aptamer-protein interactions. In addition, alternative experimental and computational approaches are discussed to study aptamer-protein interactions.
Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Proteínas/química , Proteínas/metabolismo , Animais , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação ProteicaRESUMO
In the unicellular eukaryote Saccharomyces cerevisiae, Cln3-cyclin-dependent kinase activity enables Start, the irreversible commitment to the cell division cycle. However, the concentration of Cln3 has been paradoxically considered to remain constant during G1, due to the presumed scaling of its production rate with cell size dynamics. Measuring metabolic and biosynthetic activity during cell cycle progression in single cells, we found that cells exhibit pulses in their protein production rate. Rather than scaling with cell size dynamics, these pulses follow the intrinsic metabolic dynamics, peaking around Start. Using a viral-based bicistronic construct and targeted proteomics to measure Cln3 at the single-cell and population levels, we show that the differential scaling between protein production and cell size leads to a temporal increase in Cln3 concentration, and passage through Start. This differential scaling causes Start in both daughter and mother cells across growth conditions. Thus, uncoupling between two fundamental physiological parameters drives cell cycle commitment.