RESUMO
The discovery in 1953 of the chromaffin granules as co-storage of catecholamines and ATP was soon followed by identification of a range of uniquely acidic proteins making up the isotonic vesicular storage complex within elements of the diffuse sympathoadrenal system. In the mid-1960s, the enzymatically inactive, major core protein, chromogranin A was shown to be exocytotically discharged from the stimulated adrenal gland in parallel with the co-stored catecholamines and ATP. A prohormone concept was introduced when one of the main storage proteins collectively named granins was identified as the insulin release inhibitory polypeptide pancreastatin. A wide range of granin-derived biologically active peptides have subsequently been identified. Both chromogranin A and chromogranin B give rise to antimicrobial peptides of relevance for combat of pathogens. While two of the chromogranin A-derived peptides, vasostatin-I and pancreastatin, are involved in modulation of calcium and glucose homeostasis, respectively, vasostatin-I and catestatin are important modulators of endothelial permeability, angiogenesis, myocardial contractility, and innate immunity. A physiological role is now evident for the full-length chromogranin A and vasostatin-I as circulating stabilizers of endothelial integrity and in protection against myocardial injury. The high circulating levels of chromogranin A and its fragments in patients suffering from various inflammatory diseases have emerged as challenges for future research and clinical applications.
Assuntos
Células Cromafins/metabolismo , Cromograninas/química , Fragmentos de Peptídeos/farmacologia , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Cardiotônicos/química , Cardiotônicos/farmacologia , Cromograninas/metabolismo , Humanos , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Fragmentos de Peptídeos/químicaRESUMO
Half a century after the discovery of chromogranin A as a secreted product of the catecholamine storage granules in the bovine adrenal medulla, the physiological role for the circulating pool of this protein has been recently coined, namely as an important player in vascular homeostasis. While the circulating chromogranin A since 1984 has proved to be a significant and useful marker of a wide range of pathophysiological and pathological conditions involving the diffuse neuroendocrine system, this protein has now been assigned a physiological "raison d'etre" as a regulator in vascular homeostasis. Moreover, chromogranin A processing in response to tissue damage and blood coagulation provides the first indication of a difference in time frame of the regulation of angiogenesis evoked by the intact chromogranin A and its two major peptide products, vasostatin-1 and catestatin. The impact of these discoveries on vascular homeostasis, angiogenesis, cancer, tissue repair and cardio-regulation will be discussed.
Assuntos
Vasos Sanguíneos/fisiologia , Cromogranina A/metabolismo , Homeostase/fisiologia , Neoplasias/metabolismo , Neovascularização Fisiológica/fisiologia , Fragmentos de Peptídeos/metabolismo , Animais , Bovinos , Cromogranina A/sangue , Cromogranina A/fisiologia , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , CamundongosRESUMO
Fibroblast adhesion can be modulated by proteins released by neuroendocrine cells and neurons, such as chromogranin A (CgA) and its N-terminal fragment vasostatin-1 (VS-1, CgA(1-78)). We have investigated the mechanisms of the interaction of VS-1 with fibroblasts and of its pro-adhesive activity and have found that the proadhesive activity of VS-1 relies on its interaction with the fibroblast membrane via a phospholipid-binding amphipathic alpha-helix located within residues 47-66, as well as on the interaction of the adjacent C-terminal region 67-78, which is structurally similar to ezrin-radixin-moesin-binding phosphoprotein 50 (a membrane-cytoskeleton adapter protein), with other cellular components critical for the regulation of cell cytoskeleton.
Assuntos
Adesão Celular , Cromogranina A/metabolismo , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Fragmentos de Peptídeos/metabolismo , Animais , Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto/química , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Células NIH 3T3 , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas/metabolismoRESUMO
Catestatin, an endogenous peptide derived from bovine chromogranin A, and its active domain cateslytin display powerful antimicrobial activities. We have tested the activities of catestatin and other related peptides on the growth of Plasmodium falciparum in vitro. Catestatin inhibits growth of the chloroquine-sensitive strain of P. falciparum 3D7, exhibiting 88% inhibition at 20 microM. A similar partial inhibition of parasite growth was observed for the chloroquine-resistant strain, 7G8 (64%,) and the multidrug-resistant strain, W2 (62%). In the presence of parasite-specific lactate dehydrogenase, a specific protein-protein interaction between catestatin and plasmepsin II precursor was demonstrated. In addition, catestatin partially inhibited the parasite-specific proteases plasmepsin in vitro. A specific interaction between catestatin and plasmepsins II and IV from P. falciparum and plasmepsin IV from the three remaining species of Plasmodium known to infect man was observed, suggesting a catestatin-induced reduction in availability of nutrients for protein synthesis in the parasite.
Assuntos
Cromogranina A/farmacologia , Fragmentos de Peptídeos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Animais , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Bovinos , Cromogranina A/síntese química , Cromogranina A/química , Relação Dose-Resposta a Droga , L-Lactato Desidrogenase/antagonistas & inibidores , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/química , Relação Estrutura-AtividadeRESUMO
This commentary is focusing on novel aspects on the secreted CgA- and SgII-derived peptides, vasostatin-I (bovine and human CgA(1-76), VS-I), WE-14 (CgA(316-329)), catestatin (bovine CgA(344-366), human CgA(352-372), Cts) and the SgII-derived secretoneurin (SgII(180-204)) as significant regulators of inflammatory reactions.
Assuntos
Cromogranina A/metabolismo , Peptídeos/metabolismo , Secretogranina II/metabolismo , Permeabilidade Capilar , Células Endoteliais/metabolismo , Humanos , Inflamação/metabolismo , Fragmentos de Peptídeos/metabolismoRESUMO
UNLABELLED: A growing body of evidence suggests that chromogranin A (CgA), a secretory protein released by many neuroendocrine cells and frequently used as a diagnostic and prognostic serum marker for a range of neuroendocrine tumors, is a precursor of several bioactive fragments. This work was undertaken to assess whether the N-terminal fragment CgA(1-76) (called vasostatin I) can inhibit the proangiogenic activity of vascular endothelial growth factor (VEGF), a factor involved in tumor growth. The effect of recombinant human vasostatin I (VS-1) on VEGF-induced human umbilical endothelial cells (HUVEC) signaling, proliferation, migration, and organization has been investigated. We have found that VS-1 (3 microg/ml; 330 nM) can inhibit VEGF-induced ERK phosphorylation, as well as cell migration, proliferation, morphogenesis, and invasion of collagen gels in various in vitro assays. In addition, VS-1 could inhibit the formation of capillary-like structures in Matrigel plugs in a rat model. VS-1 could also inhibit basal ERK phosphorylation and motility of HUVEC, leading to a more quiescent state in the absence of VEGF, without inducing apoptotic or necrotic effects. CONCLUSION: These findings suggest that vasostatin I may play a novel role as a regulator of endothelial cell function and homeostasis.
Assuntos
Movimento Celular , Proliferação de Células , Cromogranina A/metabolismo , Células Endoteliais/fisiologia , Fragmentos de Peptídeos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular , Forma Celular , Cromogranina A/genética , Colágeno , Combinação de Medicamentos , Células Endoteliais/citologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Homeostase , Humanos , Laminina , Fragmentos de Peptídeos/genética , Fosforilação , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Proteoglicanas , Ratos , Ratos Endogâmicos F344 , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fator de von Willebrand/metabolismoRESUMO
The granin family comprises altogether 7 different proteins originating from the diffuse neuroendocrine system and elements of the central and peripheral nervous systems. The family is dominated by three uniquely acidic members, namely chromogranin A (CgA), chromogranin B (CgB) and secretogranin II (SgII). Since the late 1980s it has become evident that these proteins are proteolytically processed, intragranularly and/or extracellularly into a range of biologically active peptides; a number of them with regulatory properties of physiological and/or pathophysiological significance. The aim of this comprehensive overview is to provide an up-to-date insight into the distribution and properties of the well established granin-derived peptides and their putative roles in homeostatic regulations. Hence, focus is directed to peptides derived from the three main granins, e.g. to the chromogranin A derived vasostatins, betagranins, pancreastatin and catestatins, the chromogranin B-derived secretolytin and the secretogranin II-derived secretoneurin (SN). In addition, the distribution and properties of the chromogranin A-derived peptides prochromacin, chromofungin, WE14, parastatin, GE-25 and serpinins, the CgB-peptide PE-11 and the SgII-peptides EM66 and manserin will also be commented on. Finally, the opposing effects of the CgA-derived vasostatin-I and catestatin and the SgII-derived peptide SN on the integrity of the vasculature, myocardial contractility, angiogenesis in wound healing, inflammatory conditions and tumors will be discussed.
Assuntos
Cromograninas/metabolismo , Animais , Humanos , Peptídeos/metabolismoRESUMO
The proinflammatory agent tumour necrosis factor alpha (TNFalpha) is one of several agents causing vascular leakage. The N-terminal domain of CgA, vasostatin-I (CgA1-76), has recently been reported to inhibit TNFalpha induced gap formation in human umbilical venous endothelial cells. Here we report on the effect of recombinant human CgA1-78, vasostatin-I, on TNFalpha induced gap formation in two model systems of vascular leakage in arterial endothelial cells of bovine pulmonary (BPAEC) and coronary (BCAEC) origin. Vasostatin-I inhibited the TNFalpha induced gap formation in both models, being inactive in the unstimulated cells. The phosphorylation of p38MAP kinase in TNFalpha activated BPAEC was markedly attenuated in the presence of vasostatin-I and the inhibitory effect corresponded to that of the specific p38MAPK inhibitor SB203580. Vasostatin-I also inhibited the phosphorylation of p38MAPK induced by both thrombin and pertussis toxin in these cells. The results demonstrate that vasostatin-I has inhibitory effects on TNFalpha-induced disruption of confluent layers of cultured pulmonary and coronary arterial endothelial cells. This suggests that vasostatin-I may affect endothelial barrier dysfunction also in arterial vascular beds. Furthermore, the inhibitory activity of vasostatin-I may be associated with the p38MAPK signalling cascade via a pertussis toxin sensitive, presumably Galphai coupled mechanism.
Assuntos
Cromogranina A/metabolismo , Vasos Coronários/citologia , Células Endoteliais/metabolismo , Fragmentos de Peptídeos/metabolismo , Artéria Pulmonar/citologia , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Bovinos , Células Cultivadas , Cromogranina A/genética , Células Endoteliais/citologia , Inibidores Enzimáticos/metabolismo , Humanos , Imidazóis/metabolismo , Fragmentos de Peptídeos/genética , Toxina Pertussis/metabolismo , Piridinas/metabolismo , Trombina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
Vasostatin-I (CgA1-76) is a naturally occurring and biologically active N-terminal peptide derived from chromogranin A (CgA), produced and secreted at high concentrations by neuroendocrine tissues and also from a range of neuroendocrine tumors. This study aims to examine the hypothesis that in the absence of classical protein receptors CgA1-76 may, like its two derived peptides CgA1-40 and CgA47-66, perturb the lipid microenvironment of other membrane receptors, as a basis for the largely inhibitory activities of these CgA peptides. The nature of the interactions between phospholipids and vasostatin-derived fragments was studied in the Langmuir film balance apparatus at 37 degrees C. The synthetic peptides CgA1-40 and CgA47-66 and a recombinant fragment (VS-I) containing vasostatin-I (Ser-Thr-Ala-CgA1-78) were compared for their effects on monolayers of phosphatidylcholine and phosphatidylethanolamine from pig brain and defined species of phosphatidylserine. Marked differences in surface pressure-area isotherms and phase-transition plateaus were apparent with the three classes of phospholipids on VS-I, CgA1-40 and CgA47-66 in physiological buffer or pure water. The results indicate that VS-I and CgA47-66 at 5-10 nM concentrations may engage in electrostatic as well as hydrophobic interactions with membrane-relevant phospholipids at physiological conditions, VS-I in particular enhancing the fluidity of saturated species of phosphatidylserine.
Assuntos
Cromograninas/metabolismo , Fragmentos de Peptídeos/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Animais , Encéfalo/metabolismo , Cromogranina A , Cromograninas/farmacologia , Interações Medicamentosas , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Fragmentos de Peptídeos/farmacologia , Fosfolipídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais/fisiologia , Suínos , TemperaturaRESUMO
Chromogranin A (CgA), an acidic granule protein of the regulated secretory pathway in the diffuse neuroendocrine system, is postulated to serve as a prohormone for regulatory peptides. Betagranin (rCgA(1-128)), the first N-terminal cleavage product of rat CgA, is 87% homologous to the bovine vasostatin I (bCgA(1-76)), previously shown to be vasoinhibitory in bovine resistance arteries. In this study the vasoactivity of homologous rat and bovine peptides was investigated in the rat posterior cerebral artery. Firstly, we examined the interaction of rhodamine (Rh)-labelled bCgA(7-40) and bCgA(47-70) with elements of the arterial wall by fluorescence microscopy. Secondly, rCgA(7-57), bCgA(1-40), bCgA(7-40) and bCgA(47-66) (chromofungin) were studied for effects on arterial tone and intracellular calcium as function of pressure in an arteriograph. Although without dilator or constrictor responses at 60-150 mm Hg, the rat peptide (rCgA(7-57)) evoked a significant delay in the onset of forced dilatation at 170 mm Hg, in contrast to the bovine peptides bCgA(1-40), bCgA(7-40) and bCgA(47-66) (chromofungin). Neither Rh-bCgA(7-40) nor Rh-bCgA(47-70) stained the endothelial layer, while Rh-bCgA(47-70) but not Rh-bCgA(7-40) stained the smooth muscle compartment. Analogously, bCgA(47-66) but not bCgA(7-40) reduced intracellular calcium, however without modifying the myogenic response. Thus, the betagranin peptide rCgA(7-57) and the two bovine chromofungin-containing peptides, highly homologous to the corresponding sequence (rCgA(47-66)), affected the rat cerebral artery without vasodilator effects, indicating significant species differences in vasoactivity of the N-terminal domain of CgA.
Assuntos
Cromograninas/metabolismo , Cromograninas/farmacologia , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Artéria Cerebral Posterior/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Bovinos , Cromogranina A , Cromograninas/química , Masculino , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Artéria Cerebral Posterior/citologia , Artéria Cerebral Posterior/metabolismo , Ligação Proteica , Ratos , Ratos Endogâmicos WKYRESUMO
N-terminal peptides of chromogranin A and B (CGA and CGB) were compared for dilator responses in isolated bovine coronary arteries (bCoA), measuring diameter changes as a function of pressure. bCoA developed and maintained myogenic tone (MYT) at approximately 20% from 50 to 150 mm Hg. In contrast to CGB(1-40), CGA(1-40) and CGA(1-76) (VS-I) both displayed significant intrinsic vasodilator effects. CGA(1-40) reduced myogenic reactivity from 70 to 150 mm Hg (p<0.05, n=6). At 75 mm Hg, CGA(1-40) showed a concentration-dependent dilatation at 0.1 nM-10 microM. The dilator effect of CGA(1-40) persisted at moderately elevated [K(+)](e) (8.4-16 mM). However, this effect was diminished by pertussis toxin (PTX) and abolished by antagonists to several subtypes of K(+) channels (tetraethylammonium, Ba(2+) and glibenclamide). These results demonstrate that the N-terminal domain of CGA has dilator effect in the myogenically active bCoA. We propose that CGA(1-40) and the naturally occurring vasostatin I are regulatory peptides of relevance for the coronary microcirculation and that a G(alphai) sub-unit and K(+) channel activation may be involved in the signal pathway.
Assuntos
Cromograninas/farmacologia , Vasos Coronários/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Vasodilatadores/farmacologia , Acetilcolina/farmacologia , Sequência de Aminoácidos , Animais , Artérias/efeitos dos fármacos , Artérias/fisiologia , Pressão Sanguínea , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/farmacologia , Calreticulina , Bovinos , Cromogranina A , Cromogranina B , Vasos Coronários/fisiologia , Humanos , Dados de Sequência Molecular , Peptídeos/farmacologia , Toxina Pertussis , Bloqueadores dos Canais de Potássio/farmacologia , Ribonucleoproteínas/farmacologia , Vasodilatação/efeitos dos fármacos , Fatores de Virulência de Bordetella/farmacologiaRESUMO
Catestatin (bovine CgA(344-364)) is a cationic peptide, which besides reducing catecholamine secretion from chromaffin cells in vitro also acts a potent vasodilator in the rat in vivo. The alleged histamine releasing effect of catestatin was tested in vitro in rat mast cells. The most active domain of catestatin (bovine CgA(344-358): RSMRLSFRARGYGFR) caused concentration-dependent (0.01-5 microM) release of histamine from peritoneal and pleural mast cells. The potency and efficacy of catestatin was higher than for the wasp venom peptide, mastoparan. Only in the pleural cells was neurotensin (NT) more potent than catestatin, mastoparan and substance P (SP), consistent with a receptor-mediated histamine release by neurotensin. Amongst these cationic peptides, substance P was least effective. The acidic CgA peptide (WE-14, bovine CgA (324-337)) neither stimulated nor modulated histamine release by the cationic peptides. The catestatin and neurotensin evoked histamine release were suppressed by pertussis toxin (PTX), suggesting involvement of a G(i) subunit. Electron micrographs of rat pleural mast cells responding to catestatin revealed a concentration-dependent discharge of granular material. We propose that catestatin activates histamine release from rat mast cells by a mechanism analogous to that already established for mastoparan and other amphiphilic cationic neuropeptides (the peptidergic pathway) and distinct from the mechanism of inhibition of catecholamine release from chromaffin cells.
Assuntos
Cromograninas/farmacologia , Liberação de Histamina/efeitos dos fármacos , Mastócitos/metabolismo , Neuropeptídeos/farmacologia , Fragmentos de Peptídeos/farmacologia , Venenos de Vespas/farmacologia , Animais , Bovinos , Cromogranina A , Relação Dose-Resposta a Droga , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Mastócitos/efeitos dos fármacos , Neuropeptídeos/química , Neurotensina/farmacologia , Peptídeos , Peritônio/citologia , Toxina Pertussis/farmacologia , Pleura/citologia , Ratos , Ratos Wistar , Substância P/farmacologiaRESUMO
The negative inotropic effects of synthetic peptides derived from the N-terminus of chromogranin A (CgA) were studied in an avascular model of the vertebrate myocardium, the isolated working frog heart (Rana esculenta). The peptides were frog and bovine CgA(4-16) and CgA(47-66), and bovine CgA(1-40) with (CgA(1-40SS)) and without an intact disulfide bridge (CgA(1-40SH)). Under basal cardiac conditions, four of the peptides caused a concentration-dependent negative inotropism that was comparable to the negative inotropy reported for human recombinant vasostatin I (CgA(1-78)) and bovine CgA(7-57). By comparison of the structural characteristics of the bovine and frog sequences with their minimally effective concentrations ranging from 68 to 125 nM of peptide, the results were consistent with the natural structure (CgA(17-38SS)) being essential for the negative inotropism. In addition, the partial sequences of the frog and bovine vasostatin I were effective in counteracting the characteristic positive inotropism exerted by isoproterenol (1 nM) at minimally effective concentrations ranging from 45 to 272 nM. Taken together, these results extend the first evidence for a cardiosuppressive role of the N-terminal domain of chromogranin A known for its co-storage with catecholamines in the sympathoadrenal system of vertebrates.
Assuntos
Cromograninas/química , Contração Miocárdica/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Sequência de Aminoácidos , Animais , Cromogranina A , Feminino , Técnicas In Vitro , Isoproterenol/farmacologia , Masculino , Dados de Sequência Molecular , Rana esculentaRESUMO
This study is the first to report on vascular effect of the chromogranin A derived Vasostatin-I (CgA(1-76)) in vivo. Cardiovascular parameters were recorded in 29 rabbits with sympathetically decentralized right carotid vascular bed. The recombinant human STA CgA(1-78) (VS-1) was infused at 480 µg/kg over 25 min. Group I was kept awake while groups II-V were anesthetized with Ketamine-xylazine. VS-1 was given alone in groups I-II while in presence of either phentolamine, phentolamine plus propranolol or hexamethonium in groups III-V. Serum VS-1 peaked at 2 µg/ml (200 nM) before onset of vascular effects and declined rapidly to ~200 ng/ml within 30 min. In all groups but III and IV VS-1 induced a brief vasoconstriction, being larger in intact than in sympathetically decentralized beds. The VS-1 induced vasoconstriction was not altered by hexamethonium but was abolished by phentolamine. In presence of the α-adrenergic blocker a long lasting vasodilatation, unaffected by propranolol, was apparent on both innervated and decentralized sides. In conclusion, VS-1 induced an α-adrenoceptor-mediated vasoconstriction presumably brought about by noradrenaline release from sympathetic nerves when infused at a dose giving an initial serum concentration of ~200 nM. This initial vasoconstriction masked a persistent adrenoceptor-independent vasodilatation, consistent with previous reports from in vitro models.
Assuntos
Fenômenos Fisiológicos Cardiovasculares/efeitos dos fármacos , Cromogranina A/farmacologia , Fragmentos de Peptídeos/farmacologia , Vasoconstrição/efeitos dos fármacos , Antagonistas Adrenérgicos alfa/farmacologia , Animais , Cromogranina A/sangue , Humanos , Masculino , Fragmentos de Peptídeos/sangue , Propranolol/farmacologia , Coelhos , Proteínas Recombinantes/sangue , Proteínas Recombinantes/farmacologia , Relação Estrutura-AtividadeRESUMO
Chromogranin A (CgA), chromogranin B (CgB), and secretogranin II (SgII) belong to a family of uniquely acidic secretory proteins in elements of the diffuse neuroendocrine system. These "granins" are characterized by numerous pairs of basic amino acids as potential sites for intra- and extragranular processing. In response to adequate stimuli, the granins are coreleased with neurotransmitters and hormones and appear in the circulation as potential modulators of homeostatic processes. This review is directed towards functional aspects of the secreted CgA, CgB, and SgII and their biologically active sequences. Widely different effects and targets have been reported for granin-derived peptides. So far, the CgA peptides vasostatin-I, pancreastatin, and catestatin, the CgB peptides CgB(1-41) and secretolytin, and the SgII peptide secretoneurin are the most likely candidates for granin-derived regulatory peptides. Most of their effects fit into patterns of direct or indirect modulations of major functions, in particular associated with inflammatory conditions.
Assuntos
Cromogranina A/química , Cromogranina B/química , Hormônios/metabolismo , Sistemas Neurossecretores/fisiologia , Secretogranina II/química , Animais , Diferenciação Celular , Homeostase , Humanos , Modelos Biológicos , Neuropeptídeos/química , Hormônios Pancreáticos/química , Fragmentos de Peptídeos/química , Peptídeos/químicaRESUMO
Chromogranin A (CgA) and secretogranin II (SgII) of the granin family of uniquely acidic proteins secreted from elements of the diffuse neuroendocrine system are also produced by cells involved in inflammation. CgA and the CgA-derived peptides vasostatin-I and catestatin are products of polymorphonuclear neutrophils accumulating at sites of injury or infections while SgII and the Sg II-derived secretoneurin may contribute to neurogenic inflammation when released from sensory nerve terminals. This review is directed towards vasostatin-I, catestatin and secretoneurin as modulators of cells and tissues associated with inflammatory conditions. The accumulated literature indicates that concerted effects of vasostatin-I and catestatin may be relevant for the first-line host-defence against invading microorganisms, contrasting the apparent lack of antibacterial potencies in secretoneurin. Oppositely directed effects of vasostatin-I and secretoneurin on endothelial permeability and transendothelial extravasation are particularly striking. While vasostatin-I protects the integrity of the endothelial barrier against the disruptive effects of proinflammatory agents, secretoneurin activates transendothelial extravasation, chemotaxis and migration of leukocytes. Oppositely directed effects of vasostatin-I and secretoneurin on formation of blood vessels are also indicated, vasostatin-I inhibiting angiogenetic parameters while secretoneurin activates not only angiogenesis but also vascularization.
Assuntos
Cromogranina A/metabolismo , Inflamação/metabolismo , Secretogranina II/metabolismo , Animais , Humanos , Neuropeptídeos/metabolismo , Fragmentos de Peptídeos/metabolismoRESUMO
A range of inflammatory conditions is associated with pathologically high levels of circulating chromogranin A (CgA). This prohormone belongs to the family of uniquely acidic proteins co-stored and co-secreted with other hormones and peptides from the diffuse neuroendocrine system. Two highly conserved, CgA-derived peptides, vasostatin-I and catestatin, have been implicated as modulators of a wide range of cells and tissues, including those of the cardiovascular system. This review focuses on links between elevated circulating CgA and cardiovascular dysfunctions in inflammatory conditions in relation to potential beneficial effects of vasostatin-I and catestatin. Characteristic membrane-penetrating properties have been assigned to both peptides, and pertussis toxin sensitivity is shared by a number of their responses, notably in the vascular and cardiac endothelium. Pertussis toxin-sensitive, receptor-independent activation via heterotrimeric G proteins and Galphai/o subunits will be discussed as possible mechanisms for inhibitory effects of vasostatin-I and catestatin on vascular and cardiac responses. The accumulated evidence provides convincing support for vasostatin-I and catestatin as regulatory peptides for the cardiovascular system, converging on alleviation of significant dysfunctions as part of several inflammatory conditions.
Assuntos
Sistema Cardiovascular/efeitos dos fármacos , Cromogranina A/farmacologia , Fragmentos de Peptídeos/farmacologia , Animais , Cromogranina A/sangue , Cromogranina A/genética , Cromogranina A/fisiologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Proteínas de Ligação ao GTP/fisiologia , Humanos , Contração Miocárdica , Óxido Nítrico/biossíntese , Toxina Pertussis/farmacologia , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
In acute myocardial infarction increased plasma levels of chromogranin A are correlated with decreased survival. At the human chromogranin A gene locus there are two naturally occurring amino acid substitution variants within the catestatin region, i.e. Gly³64Ser and Pro³7°Leu, displaying differential potencies towards inhibition of nicotinic cholinergic agonist-evoked catecholamine secretion from sympathochromaffin cells and different degrees of processing from the prohormone. Here, we examine whether two of the variants and the wild type catestatin may affect the development of infarct size during ischemic reperfusion in the Langendorff rat heart model. The hearts were subjected to regional ischemia followed by reperfusion in the presence or absence of synthetic variants of human catestatin. Compared to the Gly³64Ser variant both the wild type and Pro³7°Leu variants increased infarct size while decreasing the cardiac levels of phosphorylated Akt and two of its downstream targets, FoxO1 and BAD. In conclusion, these findings suggest that, in contrast to the Gly³64Ser variant, wild type catestatin and the Pro³7°Leu variant (allele frequency ~0.3%) increased myocardial infarct size via a mechanism involving dephosphorylation of Akt and the two downstream targets during ischemic reperfusion in the isolated rat heart.
Assuntos
Cromogranina A/farmacologia , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Animais , Células Cultivadas , Cromogranina A/metabolismo , Humanos , Masculino , Camundongos , Fragmentos de Peptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Ratos WistarRESUMO
BACKGROUND: Antimicrobial peptides derived from the natural processing of chromogranin A (CgA) are co-secreted with catecholamines upon stimulation of chromaffin cells. Since PMNs play a central role in innate immunity, we examine responses by PMNs following stimulation by two antimicrobial CgA-derived peptides. METHODOLOGY/PRINCIPAL FINDINGS: PMNs were treated with different concentrations of CgA-derived peptides in presence of several drugs. Calcium mobilization was observed by using flow cytometry and calcium imaging experiments. Immunocytochemistry and confocal microscopy have shown the intracellular localization of the peptides. The calmodulin-binding and iPLA2 activating properties of the peptides were shown by Surface Plasmon Resonance and iPLA2 activity assays. Finally, a proteomic analysis of the material released after PMNs treatment with CgA-derived peptides was performed by using HPLC and Nano-LC MS-MS. By using flow cytometry we first observed that after 15 s, in presence of extracellular calcium, Chromofungin (CHR) or Catestatin (CAT) induce a concentration-dependent transient increase of intracellular calcium. In contrast, in absence of extra cellular calcium the peptides are unable to induce calcium depletion from the stores after 10 minutes exposure. Treatment with 2-APB (2-aminoethoxydiphenyl borate), a store operated channels (SOCs) blocker, inhibits completely the calcium entry, as shown by calcium imaging. We also showed that they activate iPLA2 as the two CaM-binding factors (W7 and CMZ) and that the two sequences can be aligned with the two CaM-binding domains reported for iPLA2. We finally analyzed by HPLC and Nano-LC MS-MS the material released by PMNs following stimulation by CHR and CAT. We characterized several factors important for inflammation and innate immunity. CONCLUSIONS/SIGNIFICANCE: For the first time, we demonstrate that CHR and CAT, penetrate into PMNs, inducing extracellular calcium entry by a CaM-regulated iPLA2 pathway. Our study highlights the role of two CgA-derived peptides in the active communication between neuroendocrine and immune systems.