Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 104(2): 203-212, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30612693

RESUMO

Using exome sequencing, we have identified de novo variants in MAPK8IP3 in 13 unrelated individuals presenting with an overlapping phenotype of mild to severe intellectual disability. The de novo variants comprise six missense variants, three of which are recurrent, and three truncating variants. Brain anomalies such as perisylvian polymicrogyria, cerebral or cerebellar atrophy, and hypoplasia of the corpus callosum were consistent among individuals harboring recurrent de novo missense variants. MAPK8IP3 has been shown to be involved in the retrograde axonal-transport machinery, but many of its specific functions are yet to be elucidated. Using the CRISPR-Cas9 system to target six conserved amino acid positions in Caenorhabditis elegans, we found that two of the six investigated human alterations led to a significantly elevated density of axonal lysosomes, and five variants were associated with adverse locomotion. Reverse-engineering normalized the observed adverse effects back to wild-type levels. Combining genetic, phenotypic, and functional findings, as well as the significant enrichment of de novo variants in MAPK8IP3 within our total cohort of 27,232 individuals who underwent exome sequencing, we implicate de novo variants in MAPK8IP3 as a cause of a neurodevelopmental disorder with intellectual disability and variable brain anomalies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Encéfalo/anormalidades , Encéfalo/metabolismo , Deficiência Intelectual/genética , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adolescente , Animais , Encéfalo/diagnóstico por imagem , Sistemas CRISPR-Cas , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Criança , Pré-Escolar , Simulação por Computador , Feminino , Humanos , Deficiência Intelectual/diagnóstico por imagem , Locomoção , Lisossomos/metabolismo , Masculino , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Sequenciamento do Exoma , Adulto Jovem
2.
Clin Genet ; 100(2): 187-200, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33955014

RESUMO

Mutations affecting the transcriptional regulator Ankyrin Repeat Domain 11 (ANKRD11) are mainly associated with the multisystem developmental disorder known as KBG syndrome, but have also been identified in individuals with Cornelia de Lange syndrome (CdLS) and other developmental disorders caused by variants affecting different chromatin regulators. The extensive functional overlap of these proteins results in shared phenotypical features, which complicate the assessment of the clinical diagnosis. Additionally, re-evaluation of individuals at a later age occasionally reveals that the initial phenotype has evolved toward clinical features more reminiscent of a developmental disorder different from the one that was initially diagnosed. For this reason, variants in ANKRD11 can be ascribed to a broader class of disorders that fall within the category of the so-called chromatinopathies. In this work, we report on the clinical characterization of 23 individuals with variants in ANKRD11. The subjects present primarily with developmental delay, intellectual disability and dysmorphic features, and all but two received an initial clinical diagnosis of either KBG syndrome or CdLS. The number and the severity of the clinical signs are overlapping but variable and result in a broad spectrum of phenotypes, which could be partially accounted for by the presence of additional molecular diagnoses and distinct pathogenic mechanisms.


Assuntos
Anormalidades Múltiplas/etiologia , Doenças do Desenvolvimento Ósseo/etiologia , Deficiência Intelectual/etiologia , Proteínas Repressoras/genética , Anormalidades Dentárias/etiologia , Anormalidades Múltiplas/genética , Adolescente , Doenças do Desenvolvimento Ósseo/genética , Criança , Pré-Escolar , Face/anormalidades , Fácies , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Mutação , Linhagem , Anormalidades Dentárias/genética , Adulto Jovem
3.
Hum Mutat ; 37(7): 703-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27071356

RESUMO

Biallelic loss-of-function mutations in SPG11 cause a wide spectrum of recessively inherited, neurodegenerative disorders including hereditary spastic paraplegia (HSP), amyotrophic lateral sclerosis, and Charcot-Marie-Tooth disease. By comprehensive screening of three large cohorts of HSP index patients, we identified 83 alleles with "small" mutations and 13 alleles that carry large genomic rearrangements. Including relevant data from previous studies, we estimate that copy number variants (CNVs) account for ∼19% of pathogenic SPG11 alleles. The breakpoints for all novel and some previously reported CNVs were determined by long-range PCR and sequencing. This revealed several Alu-associated recombination hotspots. We also found evidence for additional mutational mechanisms, including for a two-step event in which an Alu retrotransposition preceded the actual rearrangement. Apparently independent samples with identical breakpoints were analyzed by microsatellite PCRs. The resulting haplotypes suggested the existence of two rearrangement founder alleles. Our findings widen the spectra of mutations and mutational mechanisms in SPG11, underscore the pivotal role played by Alus, and are of high diagnostic relevance for a wide spectrum of clinical phenotypes including the most frequent form of recessive HSP.


Assuntos
Variações do Número de Cópias de DNA , Proteínas/genética , Paraplegia Espástica Hereditária/genética , Alelos , Elementos Alu , Pontos de Quebra do Cromossomo , Cromossomos Humanos/genética , Efeito Fundador , Humanos , Mutação , Análise de Sequência de DNA
4.
Nat Genet ; 56(6): 1080-1089, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38684900

RESUMO

Despite linkage to chromosome 16q in 1996, the mutation causing spinocerebellar ataxia type 4 (SCA4), a late-onset sensory and cerebellar ataxia, remained unknown. Here, using long-read single-strand whole-genome sequencing (LR-GS), we identified a heterozygous GGC-repeat expansion in a large Utah pedigree encoding polyglycine (polyG) in zinc finger homeobox protein 3 (ZFHX3), also known as AT-binding transcription factor 1 (ATBF1). We queried 6,495 genome sequencing datasets and identified the repeat expansion in seven additional pedigrees. Ultrarare DNA variants near the repeat expansion indicate a common distant founder event in Sweden. Intranuclear ZFHX3-p62-ubiquitin aggregates were abundant in SCA4 basis pontis neurons. In fibroblasts and induced pluripotent stem cells, the GGC expansion led to increased ZFHX3 protein levels and abnormal autophagy, which were normalized with small interfering RNA-mediated ZFHX3 knockdown in both cell types. Improving autophagy points to a therapeutic avenue for this novel polyG disease. The coding GGC-repeat expansion in an extremely G+C-rich region was not detectable by short-read whole-exome sequencing, which demonstrates the power of LR-GS for variant discovery.


Assuntos
Autofagia , Proteínas de Homeodomínio , Linhagem , Ataxias Espinocerebelares , Expansão das Repetições de Trinucleotídeos , Humanos , Autofagia/genética , Expansão das Repetições de Trinucleotídeos/genética , Proteínas de Homeodomínio/genética , Ataxias Espinocerebelares/genética , Masculino , Feminino , Células-Tronco Pluripotentes Induzidas/metabolismo
5.
Am J Med Genet A ; 161A(9): 2124-33, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23824879

RESUMO

5q14.3 deletions spanning and flanking MEF2C as well as intragenic MEF2C mutations have recently been described as a cause of severe intellectual disability, epilepsy, and muscular hypotonia, with variable brain and other anomalies. With an increasing number of patients described, the clinical presentation of the patients appears to be relatively uniform, however the structural brain phenotypes described are variable. We describe two unrelated patients with overlapping de novo interstitial deletions of 4.1 and 1.9 Mb, including MEF2C in 5q14.3, one of whom had a complex brain malformation which could be best described as microcephaly with simplified gyral pattern (MSG). Expression analysis in both patients confirmed haploinsufficiency for MEF2C, decreased MECP2 expression and increased C3ORF58 (DIA1) expression, which is a new finding. A detailed analysis of brain and white matter abnormalities reported in patients with 5q14.3 deletion syndrome to date revealed a greater number of reported abnormalities in patients with deletions not including MEF2C than those with deletions or mutations directly affecting MEF2C. Screening an additional 43 patients with malformations of cerebral cortical development (MCD) for mutations in MEF2C and/or deletions in 5q14.3q15, did not detect any additional mutations, allowing us to conclude that 5q14.3 deletion syndrome is a rare cause of microcephaly with simplified gyral pattern.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 5 , Malformações do Desenvolvimento Cortical/genética , Encéfalo/patologia , Pré-Escolar , Hibridização Genômica Comparativa , Fácies , Humanos , Fatores de Transcrição MEF2/genética , Imageamento por Ressonância Magnética , Masculino , Malformações do Desenvolvimento Cortical/diagnóstico
6.
Eur J Med Genet ; 66(7): 104774, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37120078

RESUMO

In this study, we aimed to examine the diagnostic yield achieved by applying a trio approach in exome sequencing (ES) and the interdependency between the clinical specificity in families with neurodevelopmental delay. Thirty-seven families were recruited and trio-ES as well as three criteria for estimating the clinical phenotypic specificity were suggested and applied to the underaged children. All our patients showed neurodevelopmental delay and most of them a large spectrum of congenital anomalies. Applying the pathogenicity guidelines of the American College of Medical Genetics (ACMG), likely pathogenic (29.7%) and pathogenic variants (8.1%) were found in 40,5% of our index patients. Additionally, we found four variants of uncertain significance (VUS; according to ACMG) and two genes of interest (GOI; going beyond ACMG classification) (GLRA4, NRXN2). Spastic Paraplegia 4 (SPG4) caused by a formerly known SPAST variant was diagnosed in a patient with a complex phenotype, in whom a second genetic disorder may be present. A potential pathogenic variant linked to severe intellectual disability in GLRA4 requires further investigation. No interdependency between the diagnostic yield and the clinical specificity of the phenotypes could be observed. In consequence, trio-ES should be used early in the diagnostic process, independently from the specificity of the patient.


Assuntos
Deficiência Intelectual , Humanos , Sequenciamento do Exoma , Fenótipo , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Espastina/genética
7.
Genes (Basel) ; 13(2)2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35205214

RESUMO

We report a family with heterozygous deletion of exons 3-6 of the LMNA gene. The main presentation of affected family members was characterized by ventricular and supraventricular arrhythmias, atrioventricular (AV) block and sudden cardiac death (SCD) but also by severe dilative cardiomyopathy (DCM). We report on two siblings, a 36-year-old female and her 40-year-old brother, who suffer from heart failure with mildly reduced ejection fraction, AV conduction delays and premature ventricular complexes. Their 65-year-old mother underwent heart transplantation at the age of 55 due to advanced heart failure. Originally, the LMNA mutation was detected in one of the uncles. This index patient and three of his brothers died of SCD as well as their father and aunt. The two siblings were treated with implanted defibrillators in our specialized tertiary heart failure center. This case report places this specific genetic variant in the context of LMNA-associated familial DCM.


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Adulto , Idoso , Morte Súbita Cardíaca/etiologia , Feminino , Humanos , Lamina Tipo A/genética , Masculino , Mutação
9.
Ann Clin Transl Neurol ; 8(7): 1524-1527, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34092044

RESUMO

We present a female patient in her early twenties with global development delay, progressive ataxia, epilepsy, and myoclonus caused by a stop mutation in the SEMA6B gene. Truncating DNA variants located in the last exon of SEMA6B have recently been identified as a cause of autosomal dominant progressive myoclonus epilepsy. In many cases, myoclonus in the context of progressive myoclonic epilepsy is refractory to medical treatment. In the present case, treatment with zonisamide caused clinical improvement, particularly of positive and negative truncal myoclonus, considerably improving patient's gait and thus mobility.


Assuntos
Anticonvulsivantes/uso terapêutico , Epilepsias Mioclônicas Progressivas/tratamento farmacológico , Epilepsias Mioclônicas Progressivas/genética , Semaforinas/genética , Zonisamida/uso terapêutico , Feminino , Humanos , Epilepsias Mioclônicas Progressivas/diagnóstico , Linhagem , Sequenciamento do Exoma/métodos , Adulto Jovem
10.
Clin Case Rep ; 9(7): e04527, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34306701

RESUMO

The delineation of the prenatal diagnostic key features of PIK3CA-related overgrowth spectrum disorders will assume a crucial part in future and a prenatal diagnosis of the causing mutations would provide physicians with a simplified interdisciplinary perinatal management.

11.
Neurology ; 95(21): e2912-e2923, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-32873692

RESUMO

OBJECTIVE: To determine the clinical significance of an intronic biallelic pentanucleotide repeat expansion in the gene encoding replication factor C subunit 1 (RFC1) in patients with late-onset cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS), in patients with other ataxias, and in healthy controls by comprehensive genetic analyses. METHODS: In this case-control study, we included 457 individuals comprising 26 patients with complete or incomplete CANVAS, 70 patients with late-onset cerebellar ataxia, 208 healthy controls, and 153 individuals from 39 multigenerational families without ataxia to determine repeat stability. All 96 patients were screened for the repeat expansion by duplex PCR. To further characterize the repeat type and lengths, we used fragment length analysis, repeat-primed PCR, Sanger sequencing, and Southern blotting. Expression of RFC1 and the neighboring gene WDR19 were determined by quantitative PCR. RESULTS: Massive biallelic pentanucleotide expansions were found in 15/17 patients with complete CANVAS (88%), in 2/9 patients with incomplete CANVAS (22%), in 4/70 patients with unspecified, late-onset cerebellar ataxia (6%), but not in controls. In patients, the expansion comprised 800-1,000 mostly AAGGG repeats. Nonmassively expanded repeat numbers were in the range of 7-137 repeats and relatively stable during transmission. Expression of RFC1 and WDR19 were unchanged and RFC1 intron retention was not found. CONCLUSIONS: A biallelic pentanucleotide repeat expansion is a frequent cause of CANVAS and found in a considerable number of patients with an incomplete clinical presentation or other forms of cerebellar ataxia. The mechanism by which the repeat expansions are causing disease remains unclear and warrants further investigations.


Assuntos
Ataxia Cerebelar/genética , Proteína de Replicação C/genética , Adulto , Idade de Início , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Repetições de Microssatélites , Doenças do Sistema Nervoso Periférico/genética , Reflexo Anormal/genética , Proteína de Replicação C/metabolismo , Doenças Vestibulares/diagnóstico , Doenças Vestibulares/genética , Doenças Vestibulares/metabolismo
12.
Clin Transl Allergy ; 9: 9, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809376

RESUMO

Hereditary angioedema (HAE) is a life-threatening disease characterized by recurrent episodes of subcutaneous and mucosal swellings and abdominal cramping. Corticosteroids and antihistamines, which are usually beneficial in histamine-induced acquired angioedema, are not effective in HAE. Therefore, diagnosing HAE correctly is crucial for affected patients. We report a family from Northern Germany with six individuals suffering from recurrent swellings, indicating HAE. Laboratory tests and genetic diagnostics of the genes SERPING1, encoding C1 esterase inhibitor (C1-INH), and F12, encoding coagulation factor XII, were unremarkable. In three affected and one yet unaffected member of the family, we were then able to identify the c.988A > G (also termed c.1100A > G) mutation in the plasminogen (PLG) gene, which has recently been described in several families with HAE. This mutation leads to a missense mutation with an amino acid exchange p.Lys330Glu in the kringle 3 domain of plasminogen. There was no direct relationship between the earlier described cases with this mutation and the family we report here. In all affected members of the family, the symptoms manifested in adulthood, with swellings of the face, tongue and larynx, including a fatal case of a 19 year-old female individual. The frequency of the attacks was variable, ranging between once per year to once a month. In one individual, we also found decreased serum levels of plasminogen as well as coagulation factor XII. As previously reported in patients with PLG defects, icatibant proved to be very effective in controlling acute attacks, indicating an involvement of bradykinin in the pathogenesis.

13.
Brain ; 130(Pt 12): 3250-64, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18055494

RESUMO

Mutations in the filamin C gene (FLNC) cause a myofibrillar myopathy (MFM), morphologically characterized by focal myofibrillar destruction and abnormal accumulation of several proteins within skeletal muscle fibres. We studied 31 patients from four German families to evaluate the phenotype of filaminopathy. All patients harboured the same p.W2710X mutation in FLNC. Haplotype analysis suggested a founder mutation in these German filaminopathy families. The mean age at onset of clinical symptoms was 44 +/- 6 years (range, 24-57 years). Slowly progressive muscle weakness was mostly pronounced proximally, initially affecting the lower extremities and involving the upper extremities in the course of disease progression, similar to the distribution of weakness seen in limb-girdle muscular dystrophies (LGMD). Patients frequently developed respiratory muscle weakness. About one-third of the patients showed cardiac abnormalities comprising conduction blocks, tachycardia, diastolic dysfunction and left ventricular hypertrophy indicating a cardiac involvement in filaminopathy. Serum creatine kinase levels varied from normal up to 10-fold of the upper limit. Magnetic resonance imaging studies showed a rather homogenous pattern of muscle involvement in the lower extremities differing from that in other types of MFM. Myopathological features included perturbation of myofibrillar alignment, accumulation of granulofilamentous material similar to that seen in primary desminopathies and abnormal intracellular protein deposits typical of MFM. Decreased activities of oxidative enzymes and fibre hypertrophy seem to be early features, whereas dystrophic changes were present in advanced stages of filaminopathy. Rimmed vacuoles were detected in only a few cases. The intracellular aggregates were composed of a variety of proteins including filamin C, desmin, myotilin, Xin, dystrophin and sarcoglycans. Therapy is so far limited to symptomatic treatment. The German filaminopathy cohort, the largest group of patients studied so far, shares phenotypic features with LGMD and presents with characteristic histopathological findings of MFM.


Assuntos
Proteínas Contráteis/genética , Proteínas dos Microfilamentos/genética , Doenças Musculares/genética , Miofibrilas/ultraestrutura , Adulto , Idade de Início , Biópsia , Análise Mutacional de DNA/métodos , Progressão da Doença , Feminino , Filaminas , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Debilidade Muscular/genética , Músculo Esquelético/ultraestrutura , Atrofia Muscular/genética , Doenças Musculares/patologia , Doenças Musculares/fisiopatologia , Mutação , Linhagem , Fenótipo , Músculos Respiratórios/fisiopatologia
14.
Hum Mutat ; 28(2): 204-5, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17221874

RESUMO

Townes-Brocks syndrome (TBS) is an autosomal dominant malformation syndrome characterized by renal, anal, ear, and thumb anomalies caused by SALL1 mutations. To date, 36 SALL1 mutations have been described in TBS patients. All but three of those, namely p.R276X, p.S372X, and c.1404dupG, have been found only in single families thereby preventing phenotype-genotype correlations. Here we present 20 novel mutations (12 short deletions, five short duplications, three nonsense mutations) in 20 unrelated families. We delineate the phenotypes and report previously unknown ocular manifestations, i.e. congenital cataracts with unilateral microphthalmia. We show that 46 out of the now 56 SALL1 mutations are located between the coding regions for the glutamine-rich domain mediating SALL protein interactions and 65 bp 3' of the coding region for the first double zinc finger domain, narrowing the SALL1 mutational hotspot region to a stretch of 802 bp within exon 2. Of note, only two SALL1 mutations would result in truncated proteins without the glutamine-rich domain, one of which is reported here. The latter is associated with anal, ear, hand, and renal manifestations, indicating that the glutamine-rich domain is not required for typical TBS.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Mutação , Fatores de Transcrição/genética , Pré-Escolar , Análise Mutacional de DNA , Feminino , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Síndrome
15.
Eur J Med Genet ; 50(5): 392-8, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17625999

RESUMO

X-linked dominant chondrodysplasia punctata (Conradi-Hünermann disease, CDPX2) is characterised by short stature, stippled epiphyses, cataracts, ichthyosiform erythroderma and patchy alopecia of the scalp. The disorder is caused by mutations within the emopamil binding protein (EBP) gene encoding a 3beta-hydroxysteroid-Delta(8),Delta(7)-isomerase. The intrafamilial variation of disease severity is a known feature of CDPX2 probably caused by skewed X-inactivation. We report on a female fetus with typical symptoms of CDPX2 such as short limbs, postaxial polydactyly, ichthyotic skin lesions and punctate calcifications. Molecular genetic analysis of the EBP gene revealed a nonsense mutation (c.328C>T, p.R110X), which was previously detected in one CDPX2 patient and in a second female patient, who was only affected on one body side and erroneously diagnosed as CHILD syndrome. Surprisingly, the mother of our fetus carries the same mutation without having any signs of CDPX2. X-inactivation studies did not reveal any evidence of skewing neither in the mother nor in the fetus.


Assuntos
Condrodisplasia Punctata/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Adulto , Condrodisplasia Punctata/enzimologia , Cromossomos Humanos X/genética , Códon sem Sentido , Feminino , Genes Dominantes , Doenças Genéticas Ligadas ao Cromossomo X/enzimologia , Humanos , Penetrância , Fenótipo , Gravidez , Diagnóstico Pré-Natal , Esteroide Isomerases/genética , Inativação do Cromossomo X
17.
Mol Genet Genomic Med ; 5(1): 21-27, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28116327

RESUMO

BACKGROUND: Cerebral cavernous malformations (CCM) are vascular lesions of the central nervous system that can be found in sporadic or autosomal dominantly inherited forms and manifest with headaches, seizures, and hemorrhagic stroke. The precise proportion of de novo mutations in the CCM1,CCM2, and CCM3 genes remains unknown. METHODS: We here present a series of six trios with de novo mutations that have been analyzed by amplicon deep sequencing to differentiate between constitutional and postzygotic mutations. RESULTS: In one case, allelic ratios clearly indicated mosaicism for a CCM3 splice site mutation found in blood and buccal mucosa of a 2-year-old boy with multiple CCMs. The remaining five de novo mutations proved to be constitutional. In addition to three CCM3, two CCM1, and one CCM2 de novo point mutations, a deletion of the entire CCM3 gene was identified in an index case that most likely originated from an early postzygotic event. These are the first high-level mosaic mutations reported in blood samples of isolated CCM cases. CONCLUSION: Our data demonstrate that de novo mutations in CCM1-3 might be more frequent than previously thought. Furthermore, amplicon deep sequencing is useful to discriminate between patients with constitutional and postzygotic mutations, and thereby improves genetic counseling.

18.
JAMA Neurol ; 74(7): 806-812, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28558098

RESUMO

Importance: Chromosomal rearrangements are increasingly recognized to underlie neurologic disorders and are often accompanied by additional clinical signs beyond the gene-specific phenotypic spectrum. Objective: To elucidate the causal genetic variant in a large US family with co-occurrence of dopa-responsive dystonia as well as skeletal and eye abnormalities (ie, ptosis, myopia, and retina detachment). Design, Setting, and Participants: We examined 10 members of a family, including 5 patients with dopa-responsive dystonia and skeletal and/or eye abnormalities, from a US tertiary referral center for neurological diseases using multiple conventional molecular methods, including fluorescence in situ hybridization and array comparative genomic hybridization as well as large-insert whole-genome sequencing to survey multiple classes of genomic variations. Of note, there was a seemingly implausible transmission pattern in this family due to a mutation-negative obligate mutation carrier. Main Outcomes and Measures: Genetic diagnosis in affected family members and insight into the formation of large deletions. Results: Four members were diagnosed with definite and 1 with probable dopa-responsive dystonia. All 5 affected individuals carried a large heterozygous deletion encompassing all 6 exons of GCH1. Additionally, all mutation carriers had congenital ptosis requiring surgery, 4 had myopia, 2 had retinal detachment, and 2 showed skeletal abnormalities of the hands, ie, polydactyly or syndactyly or missing a hand digit. Two individuals were reported to be free of any disease. Analyses revealed complex chromosomal rearrangements on chromosome 14q21-22 in unaffected individuals that triggered the expansion to a larger deletion segregating with affection status. The expansion occurred recurrently, explaining the seemingly non-mendelian inheritance pattern. These rearrangements included a deletion of GCH1, which likely contributes to the dopa-responsive dystonia, as well as a deletion of BMP4 as a potential cause of digital and eye abnormalities. Conclusions and Relevance: Our findings alert neurologists to the importance of clinical red flags, ie, unexpected co-occurrence of clinical features that may point to the presence of chromosomal rearrangements as the primary disease cause. The clinical management and diagnostics of such patients requires an interdisciplinary approach in modern clinical-diagnostic care.


Assuntos
Proteína Morfogenética Óssea 4/genética , Distúrbios Distônicos/genética , Anormalidades do Olho/genética , GTP Cicloidrolase/genética , Anormalidades Musculoesqueléticas/genética , Deleção Cromossômica , Humanos , Linhagem
20.
Eur J Hum Genet ; 13(1): 118-20, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15470364

RESUMO

The spinocerebellar ataxias (SCAs) with autosomal dominant inheritance are a group of neurodegenerative disorders with overlapping as well as highly variable phenotypes. Genetically, at least 25 different loci have been identified. Seven SCAs are caused by CAG trinucleotide repeat expansions, for 13 the chromosomal localization is known solely. Recently, a missense mutation in the fibroblast growth factor 14 gene (FGF14) has been reported in a Dutch family with a new dominantly inherited form of SCA. To evaluate the frequency of mutations in the FGF14 gene, we performed molecular genetic analyses for the five exons in 208 nonrelated familial ataxia cases and 208 control samples. In one patient, we detected a novel single base pair deletion in exon 4 (c.487delA) creating a frameshift mutation. In addition, we found DNA polymorphisms in exon 1a, 4, and 5, an amino-acid exchange at position 124, as well as a single-nucleotide polymorphism in the 3'-untranslated region of exon 5.


Assuntos
Ataxia/genética , Fatores de Crescimento de Fibroblastos/genética , Mutação da Fase de Leitura , Predisposição Genética para Doença , Polimorfismo Genético , Regiões 3' não Traduzidas/genética , Adolescente , Substituição de Aminoácidos , Éxons/genética , Humanos , Masculino , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA