Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(6): 107330, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679329

RESUMO

The cannabinoid type 2 receptor (CB2R), a G protein-coupled receptor, is an important regulator of immune cell function and a promising target to treat chronic inflammation and fibrosis. While CB2R is typically targeted by small molecules, including endo-, phyto-, and synthetic cannabinoids, peptides-owing to their size-may offer a different interaction space to facilitate differential interactions with the receptor. Here, we explore plant-derived cyclic cystine-knot peptides as ligands of the CB2R. Cyclotides are known for their exceptional biochemical stability. Recently, they gained attention as G protein-coupled receptor modulators and as templates for designing peptide ligands with improved pharmacokinetic properties over linear peptides. Cyclotide-based ligands for CB2R were profiled based on a peptide-enriched extract library comprising nine plants. Employing pharmacology-guided fractionation and peptidomics, we identified the cyclotide vodo-C1 from sweet violet (Viola odorata) as a full agonist of CB2R with an affinity (Ki) of 1 µM and a potency (EC50) of 8 µM. Leveraging deep learning networks, we verified the structural topology of vodo-C1 and modeled its molecular volume in comparison to the CB2R ligand binding pocket. In a fragment-based approach, we designed and characterized vodo-C1-based bicyclic peptides (vBCL1-4), aiming to reduce size and improve potency. Opposite to vodo-C1, the vBCL peptides lacked the ability to activate the receptor but acted as negative allosteric modulators or neutral antagonists of CB2R. This study introduces a macrocyclic peptide phytocannabinoid, which served as a template for the development of synthetic CB2R peptide modulators. These findings offer opportunities for future peptide-based probe and drug development at cannabinoid receptors.


Assuntos
Receptor CB2 de Canabinoide , Receptor CB2 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/química , Humanos , Ligantes , Ciclotídeos/química , Ciclotídeos/farmacologia , Células HEK293 , Descoberta de Drogas
2.
Circ Res ; 127(5): 593-606, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32418507

RESUMO

RATIONALE: Kidney homeostasis is critically determined by the coordinated activity of the renin-angiotensin system (RAS), including the balanced synthesis of its main effector peptides Ang (angiotensin) II and Ang (1-7). The condition of enzymatic overproduction of Ang II relative to Ang (1-7) is termed RAS dysregulation and leads to cellular signals, which promote hypertension and organ damage, and ultimately progressive kidney failure. ACE2 (angiotensin-converting enzyme 2) and NEP (neprilysin) induce the alternative, and potentially reno-protective axis by enhancing Ang (1-7) production. However, their individual contribution to baseline RAS balance and whether their activities change in chronic kidney disease (CKD) has not yet been elucidated. OBJECTIVE: To examine whether NEP-mediated Ang (1-7) generation exceeds Ang II formation in the healthy kidney compared with diseased kidney. METHODS AND RESULTS: In this exploratory study, we used liquid chromatography-tandem mass spectrometry to measure Ang II and Ang (1-7) synthesis rates of ACE, chymase and NEP, ACE2, PEP (prolyl-endopeptidase), PCP (prolyl-carboxypeptidase) in kidney biopsy homogenates in 11 healthy living kidney donors, and 12 patients with CKD. The spatial expression of RAS enzymes was determined by immunohistochemistry. Healthy kidneys showed higher NEP-mediated Ang (1-7) synthesis than Ang II formation, thus displaying a strong preference towards the reno-protective alternative RAS axis. In contrast, in CKD kidneys higher levels of Ang II were recorded, which originated from mast cell chymase activity. CONCLUSIONS: Ang (1-7) is the dominant RAS peptide in healthy human kidneys with NEP rather than ACE2 being essential for its generation. Severe RAS dysregulation is present in CKD dictated by high chymase-mediated Ang II formation. Kidney RAS enzyme analysis might lead to novel therapeutic approaches for CKD.


Assuntos
Angiotensina II/metabolismo , Angiotensina I/metabolismo , Rim/enzimologia , Neprilisina/metabolismo , Fragmentos de Peptídeos/metabolismo , Insuficiência Renal Crônica/enzimologia , Sistema Renina-Angiotensina , Idoso , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Estudos de Casos e Controles , Quimases/metabolismo , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Rim/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neprilisina/antagonistas & inibidores
3.
Biochem J ; 478(6): 1287-1301, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33666645

RESUMO

Bowman-Birk inhibitors (BBIs) are plant-derived serine proteinase inhibitors. Endogenously, they function as defense molecules against pathogens and insects, but they also have been explored for applications in cancer treatment and inflammatory disorders. Here, we isolated 15 novel BBIs from the bulb of Hyacinthus orientalis (termed HOSPIs). These isoinhibitors consisted of two or three chains, respectively, that are linked by disulfides bonds based on proposed cleavage sites in the canonical BBI reactive site loop. They strongly inhibited trypsin (Ki = 0.22-167 nM) and α-chymotrypsin (Ki = 19-1200 nM). Notably, HOSPI-B4 contains a six-residue reactive loop, which appears to be the smallest such motif discovered in BBIs to date. HOSPI-A6 and -A7 contain an unusual reactive site, i.e. Leu-Met at the P1-P1' position and have strong inhibitory activity against trypsin, α-chymotrypsin, and elastase. Analysis of the cDNA encoding HOSPIs revealed that the precursors have HOSPI-like domains repeated at least twice with a defined linker sequence connecting individual domains. Lastly, mutational analysis of HOSPIs suggested that the linker sequence does not affect the inhibitory activity, and a Thr residue at the P2 site and a Pro at the P3' site are crucial for elastase inhibition. Using mammalian proteases as representative model system, we gain novel insight into the sequence diversity and proteolytic activity of plant BBI. These results may aid the rational design of BBI peptides with potent and distinct inhibitory activity against human, pathogen, or insect serine proteinases.


Assuntos
Hyacinthus/enzimologia , Inibidores de Serina Proteinase/isolamento & purificação , Inibidores de Serina Proteinase/farmacologia , Sequência de Aminoácidos , Clonagem Molecular , Hyacinthus/genética , Homologia de Sequência , Inibidores de Serina Proteinase/genética , Especificidade por Substrato
4.
J Nat Prod ; 83(11): 3305-3314, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33118348

RESUMO

Plant peptide protease inhibitors are important molecules in seed storage metabolism and to fight insect pests. Commonly they contain multiple disulfide bonds and are exceptionally stable molecules. In this study, a novel peptide protease inhibitor from beetroot (Beta vulgaris) termed bevuTI-I was isolated, and its primary structure was determined via mass spectrometry-based amino acid sequencing. By sequence homology analysis a few peptides with high similarity to bevuTI-I, also known as the Mirabilis jalapa trypsin inhibitor subfamily of knottin-type protease inhibitors, were discovered. Hence, we assessed bevuTI-I for inhibitory activity toward trypsin (IC50 = 471 nM) and human prolyl oligopeptidase (IC50 = 11 µM), which is an emerging drug target for neurodegenerative and inflammatory disorders. Interestingly, using a customized bioinformatics approach, bevuTI-I was found to be the missing link to annotate 243 novel sequences of M. jalapa trypsin inhibitor-like peptides. According to their phylogenetic distribution they appear to be common in several plant families. Therefore, the presented approach and our results may help to discover and classify other plant-derived cystine knot peptides, a class of plant molecules that play important functions in plant physiology and are currently being explored as lead molecules and scaffolds in drug development.


Assuntos
Beta vulgaris/química , Cistina/química , Descoberta de Drogas , Peptídeos/química , Proteínas de Plantas/química , Inibidores de Proteases/farmacologia , Sequência de Aminoácidos , Filogenia , Proteólise , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
Proc Natl Acad Sci U S A ; 113(15): 3960-5, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27035952

RESUMO

Multiple sclerosis (MS) is the most common autoimmune disease affecting the central nervous system. It is characterized by auto-reactive T cells that induce demyelination and neuronal degradation. Treatment options are still limited and several MS medications need to be administered by parenteral application but are modestly effective. Oral active drugs such as fingolimod have been weighed down by safety concerns. Consequently, there is a demand for novel, especially orally active therapeutics. Nature offers an abundance of compounds for drug discovery. Recently, the circular plant peptide kalata B1 was shown to silence T-cell proliferation in vitro in an IL-2-dependent mechanism. Owing to this promising effect, we aimed to determine in vivo activity of the cyclotide [T20K]kalata B1 using the MS mouse model experimental autoimmune encephalomyelitis (EAE). Treatment of mice with the cyclotide resulted in a significant delay and diminished symptoms of EAE by oral administration. Cyclotide application substantially impeded disease progression and did not exhibit adverse effects. Inhibition of lymphocyte proliferation and the reduction of proinflammatory cytokines, in particular IL-2, distinguish the cyclotide from other marketed drugs. Considering their stable structural topology and oral activity, cyclotides are candidates as peptide therapeutics for pharmaceutical drug development for treatment of T-cell-mediated disorders.


Assuntos
Proliferação de Células/efeitos dos fármacos , Ciclotídeos/farmacologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Interleucina-2/metabolismo , Esclerose Múltipla/tratamento farmacológico , Linfócitos T/efeitos dos fármacos , Animais , Citocinas/imunologia , Modelos Animais de Doenças , Progressão da Doença , Avaliação Pré-Clínica de Medicamentos , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
6.
J Proteome Res ; 14(11): 4851-62, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26399495

RESUMO

Cyclotides are plant-derived mini proteins. They are genetically encoded as precursor proteins that become post-translationally modified to yield circular cystine-knotted molecules. Because of this structural topology cyclotides resist enzymatic degradation in biological fluids, and hence they are considered as promising lead molecules for pharmaceutical applications. Despite ongoing efforts to discover novel cyclotides and analyze their biodiversity, it is not clear how many individual peptides a single plant specimen can express. Therefore, we investigated the transcriptome and cyclotide peptidome of Viola tricolor. Transcriptome mining enabled the characterization of cyclotide precursor architecture and processing sites important for biosynthesis of mature peptides. The cyclotide peptidome was explored by mass spectrometry and bottom-up proteomics using the extracted peptide sequences as queries for database searching. In total 164 cyclotides were discovered by nucleic acid and peptide analysis in V. tricolor. Therefore, violaceous plants at a global scale may be the source to as many as 150 000 individual cyclotides. Encompassing the diversity of V. tricolor as a combinatorial library of bioactive peptides, this commercially available medicinal herb may be a suitable starting point for future bioactivity-guided screening studies.


Assuntos
Ciclotídeos/química , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Processamento de Proteína Pós-Traducional , Transcriptoma , Violaceae/genética , Cromatografia Líquida de Alta Pressão , Ciclotídeos/genética , Ciclotídeos/isolamento & purificação , Ciclotídeos/metabolismo , Motivos Nó de Cisteína/genética , Mineração de Dados , Biblioteca Gênica , Extração Líquido-Líquido , Modelos Moleculares , Dados de Sequência Molecular , Componentes Aéreos da Planta/química , Extratos Vegetais/química , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos , Alinhamento de Sequência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Violaceae/metabolismo
7.
J Nat Prod ; 78(5): 1073-82, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25894999

RESUMO

Cyclotides are head-to-tail cyclized peptides comprising a stabilizing cystine-knot motif. To date, they are well known for their diverse bioactivities such as anti-HIV and immunosuppressive properties. Yet little is known about specific molecular mechanisms, in particular the interaction of cyclotides with cellular protein targets. Native and synthetic cyclotide-like peptides from Momordica plants are potent and selective inhibitors of different serine-type proteinases such as trypsin, chymotrypsin, matriptase, and tryptase-beta. This study describes the bioactivity-guided isolation of a cyclotide from Psychotria solitudinum as an inhibitor of another serine-type protease, namely, the human prolyl oligopeptidase (POP). Analysis of the inhibitory potency of Psychotria extracts and subsequent fractionation by liquid chromatography yielded the isolated peptide psysol 2 (1), which exhibited an IC50 of 25 µM. In addition the prototypical cyclotide kalata B1 inhibited POP activity with an IC50 of 5.6 µM. The inhibitory activity appeared to be selective for POP, since neither psysol 2 nor kalata B1 were able to inhibit the proteolytic activity of trypsin or chymotrypsin. The enzyme POP is well known for its role in memory and learning processes, and it is currently being considered as a promising therapeutic target for the cognitive deficits associated with several psychiatric and neurodegenerative diseases, such as schizophrenia and Parkinson's disease. In the context of discovery and development of POP inhibitors with beneficial ADME properties, cyclotides may be suitable starting points considering their stability in biological fluids and possible oral bioavailability.


Assuntos
Ciclotídeos/química , Ciclotídeos/farmacologia , Psychotria/química , Serina Endopeptidases/efeitos dos fármacos , Inibidores de Serina Proteinase/química , Algoritmos , Sequência de Aminoácidos , Quimotripsina/efeitos dos fármacos , Humanos , Estrutura Molecular , Prolil Oligopeptidases , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Relação Estrutura-Atividade , Tripsina/efeitos dos fármacos
8.
ACS Pharmacol Transl Sci ; 7(7): 1937-1950, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39022353

RESUMO

Hypoparathyroidism is a common sequela of thyroid surgery; in this study, we aimed at exploring the pathogenesis behind it. The following premises suggest that wound fluid might be a causative agent. (i) Parathyroid hormone secretion is under feedback control by the calcium-sensing receptor, which responds to a diverse array of activating ligands. (ii) Postoperative hypoparathyroidism arises from a secretory deficiency of the parathyroid glands. Even in patients later unaffected by hypoparathyroidism, parathyroid hormone levels drop within hours after surgery. (iii) Wound fluid is bound to enter the tissue around the thyroid bed, where the parathyroid glands are located. Its composition is shaped by a series of proteolytic reactions triggered by wounding. Using thyroid drainage as a surrogate, we addressed the possibility that wound fluid contains compounds activating the calcium-sensing receptor. Drainage fluid ultrafiltrate was found to be rich in amino acids, and on separation by HPLC, compounds activating the calcium-sensing receptor partitioned with hydrophilic matter that rendered buffer acidic. The data show that glutamate and aspartate at millimolar concentrations supported activation of the calcium-sensing receptor, an effect contingent on low pH. In the presence of glutamate/aspartate, protons activated the calcium-sensing receptor with a pH50 of 6.1, and at pH 5, produced maximal activation. This synergistic mode of action was exclusive; glutamine/asparagine did not substitute for the acidic amino acids, nor did Ca2+ substitute for protons. NPS-2143, a negative allosteric receptor modulator completely blocked receptor activation by glutamate/aspartate and by fractionated drainage fluid. Thus, wound fluid may be involved in suppressing parathyroid hormone secretion.

9.
Biomed Pharmacother ; 177: 117057, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38976957

RESUMO

Cyclotides are head-to-tail cyclized peptides with a unique cystine-knot motif. Their structure provides exceptional resistance against enzymatic, chemical, or thermal degradation compared to other peptides. Peptide-based therapeutics promise high specificity, selectivity and lower immunogenicity, making them safer alternatives to small molecules or large biologicals. Cyclotides were researched due to their anti-cancer properties by inducing apoptosis in tumor cells in the past, but the impact of cyclotides on cytotoxic immune cells was poorly studied. Natural Killer (NK) cells are cytotoxic innate lymphoid cells and play an important role in the defense against infected, stressed and transformed cells. NK cells do not need prior sensitization and act in an antigen independent manner, holding promising potential in the field of immunotherapy. To investigate the effect of immunomodulatory cyclotides on NK cells, we evaluated several peptide-enriched plant extracts on NK cell mediated cytotoxicity. We observed that the extract samples derived from Carapichea ipecacuanha (Brot.) L. Andersson augments the killing potential of mouse NK cells against different tumor targets in vitro. Subsequent isolation of cyclotides from C. ipecacuanha extracts led to the identification of a primary candidate that enhances cytotoxicity of both mouse and human NK cells. The augmented killing is facilitated by the increased degranulation capacity of NK cells. In addition, we noted a direct toxic effect of caripe 8 on tumor cells, suggesting a dual therapeutic potential in cancer treatment. This study offers novel insights how natural peptides can influence NK cell cytotoxicity. These pre-clinical findings hold significant promise for advancing current immunotherapeutic approaches.

10.
Biopolymers ; 100(5): 438-52, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23897543

RESUMO

Cyclotides are a unique class of ribosomally synthesized cysteine-rich miniproteins characterized by a head-to-tail cyclized backbone and three conserved disulfide-bonds in a knotted arrangement. Originally they were discovered in the coffee-family plant Oldenlandia affinis (Rubiaceae) and have since been identified in several species of the violet, cucurbit, pea, potato, and grass families. However, the identification of novel cyclotide-containing plant species still is a major challenge due to the lack of a rapid and accurate analytical workflow in particular for large sampling numbers. As a consequence, their phylogeny in the plant kingdom remains unclear. To gain further insight into the distribution and evolution of plant cyclotides, we analyzed ∼300 species of >40 different families, with special emphasis on plants from the order Gentianales. For this purpose, we have developed a refined screening methodology combining chemical analysis of plant extracts and bioinformatic analysis of transcript databases. Using mass spectrometry and transcriptome-mining, we identified nine novel cyclotide-containing species and their related cyclotide precursor genes in the tribe Palicoureeae. The characterization of novel peptide sequences underlines the high variability and plasticity of the cyclotide framework, and a comparison of novel precursor proteins from Carapichea ipecacuanha illustrated their typical cyclotide gene architectures. Phylogenetic analysis of their distribution within the Psychotria alliance revealed cyclotides to be restricted to Palicourea, Margaritopsis, Notopleura, Carapichea, Chassalia, and Geophila. In line with previous reports, our findings confirm cyclotides to be one of the largest peptide families within the plant kingdom and suggest that their total number may exceed tens of thousands.


Assuntos
Ciclotídeos , Rubiaceae , Sequência de Aminoácidos , Ciclotídeos/genética , Cistina , Dados de Sequência Molecular , Peptídeos Cíclicos/genética , Filogenia , Proteínas de Plantas/química , Rubiaceae/química
11.
Anal Bioanal Chem ; 405(25): 8105-20, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23812855

RESUMO

The fluorescent tag 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC; AccQ Fluor reagent kit from Waters) is a commercial N-terminal label for proteinogenic amino acids (AAs), designed for reversed-phase separation and quantification of the AA racemates. The applicability of AQC-tagged AAs and AA-type zwitterionic compounds was tested for enantiomer separation on the tert-butyl carbamate modified quinine and quinidine based chiral stationary phases, QN-AX and QD-AX employing polar-organic elution conditions. The investigated test analytes included the enantiomers of the positional isomers of isoleucine (Ile), threonine, homoserine, and 4-hydroxyproline. Furthermore, ß-AAs, cyclic, and heterocyclic AAs including trans-2-amino-cyclohexane carboxylic acid and trans-2-aminocyclohexyl sulfonic acid, phenylalanine derivatives substituted with halides with increasing electronegativity and 3,4-dihydroxyphenylalanine, cysteine-related derivatives including homocysteic acid, methionine sulfone, cysteine-S-acetic acid, and cysteine-S-acetamide as well as a small range of aminophosphonic acids were enantioseparated. A mechanistic interaction study of AQC-AAs in comparison with fluoresceine isothiocyanate-labeled AAs was performed. The chiral and chemoselective recognition processes involved in enantiomer separation and retention was systematically discussed. Special emphasis was set on the influential factors exhibited by the chemistry, branching position, and spatial properties of the investigated zwitterionic analytes. The general interest to separate and distinguish between different types of branched-chained AAs and metabolic side products thereof lies in the toxicity of some of these compounds, which makes for instance allo-Ile an attractive candidate in disease-related biomarker research.


Assuntos
Aminoácidos/isolamento & purificação , Aminoquinolinas/química , Carbamatos/química , Cromatografia Líquida de Alta Pressão/métodos , Quinidina/química , Quinina/química , Aminoácidos/química , Cromatografia de Fase Reversa/métodos , Cinchona/química , Fluorescência , Estereoisomerismo
12.
Drug Discov Today ; 28(5): 103554, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36921670

RESUMO

Cell migration is a key physiological process in the development and homeostasis of multicellular organisms; errors in this complex system can trigger the development of cancer or inflammatory disorders. Therefore, modulating cell migration provides opportunities for drug discovery. Peptides are gaining importance on the global therapeutics market, given their unique properties compared with established small-molecule drugs or biologics. In this review, we identified over 470 peptides modulating cell migration and analyzed their characteristics. Over 95% of these peptides are in the discovery or preclinical stage, because the transition of peptide hits into drug leads often results in a bottleneck in the development process. We summarize chemical strategies in (pre-)clinical development to enhance drug-like properties of bioactive peptides.


Assuntos
Neoplasias , Peptídeos , Humanos , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peptídeos/química , Movimento Celular
13.
Artigo em Inglês | MEDLINE | ID: mdl-37250919

RESUMO

Peptides are biopolymers, typically consisting of 2-50 amino acids. They are biologically produced by the cellular ribosomal machinery or by non-ribosomal enzymes and, sometimes, other dedicated ligases. Peptides are arranged as linear chains or cycles, and include post-translational modifications, unusual amino acids and stabilizing motifs. Their structure and molecular size render them a unique chemical space, between small molecules and larger proteins. Peptides have important physiological functions as intrinsic signalling molecules, such as neuropeptides and peptide hormones, for cellular or interspecies communication, as toxins to catch prey or as defence molecules to fend off enemies and microorganisms. Clinically, they are gaining popularity as biomarkers or innovative therapeutics; to date there are more than 60 peptide drugs approved and more than 150 in clinical development. The emerging field of peptidomics comprises the comprehensive qualitative and quantitative analysis of the suite of peptides in a biological sample (endogenously produced, or exogenously administered as drugs). Peptidomics employs techniques of genomics, modern proteomics, state-of-the-art analytical chemistry and innovative computational biology, with a specialized set of tools. The complex biological matrices and often low abundance of analytes typically examined in peptidomics experiments require optimized sample preparation and isolation, including in silico analysis. This Primer covers the combination of techniques and workflows needed for peptide discovery and characterization and provides an overview of various biological and clinical applications of peptidomics.

14.
PNAS Nexus ; 2(5): pgad144, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37215633

RESUMO

Neuropeptides are important regulators of animal physiology and behavior. Hitherto the gold standard for the localization of neuropeptides have been immunohistochemical methods that require the synthesis of antibody panels, while another limiting factor has been the brain's opacity for subsequent in situ light or fluorescence microscopy. To address these limitations, we explored the integration of high-resolution mass spectrometry imaging (MSI) with microtomography for a multiplexed mapping of neuropeptides in two evolutionary distant ant species, Atta sexdens and Lasius niger. For analyzing the spatial distribution of chemically diverse peptide molecules across the brain in each species, the acquisition of serial mass spectrometry images was essential. As a result, we have comparatively mapped the three-dimensional (3D) distributions of eight conserved neuropeptides throughout the brain microanatomy. We demonstrate that integrating the 3D MSI data into high-resolution anatomy models can be critical for studying organs with high plasticity such as brains of social insects. Several peptides, like the tachykinin-related peptides (TK) 1 and 4, were widely distributed in many brain areas of both ant species, whereas others, for instance myosuppressin, were restricted to specific regions only. Also, we detected differences at the species level; many peptides were identified in the optic lobe of L. niger, but only one peptide (ITG-like) was found in this region in A. sexdens. Building upon MS imaging studies on neuropeptides in invertebrate model systems, our approach leverages correlative MSI and computed microtomography for investigating fundamental neurobiological processes by visualizing the unbiased 3D neurochemistry in its complex anatomic environment.

15.
Nat Commun ; 14(1): 8064, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38052802

RESUMO

Despite the increasing number of GPCR structures and recent advances in peptide design, the development of efficient technologies allowing rational design of high-affinity peptide ligands for single GPCRs remains an unmet challenge. Here, we develop a computational approach for designing conjugates of lariat-shaped macrocyclized peptides and a small molecule opioid ligand. We demonstrate its feasibility by discovering chemical scaffolds for the kappa-opioid receptor (KOR) with desired pharmacological activities. The designed De Novo Cyclic Peptide (DNCP)-ß-naloxamine (NalA) exhibit in vitro potent mixed KOR agonism/mu-opioid receptor (MOR) antagonism, nanomolar binding affinity, selectivity, and efficacy bias at KOR. Proof-of-concept in vivo efficacy studies demonstrate that DNCP-ß-NalA(1) induces a potent KOR-mediated antinociception in male mice. The high-resolution cryo-EM structure (2.6 Å) of the DNCP-ß-NalA-KOR-Gi1 complex and molecular dynamics simulations are harnessed to validate the computational design model. This reveals a network of residues in ECL2/3 and TM6/7 controlling the intrinsic efficacy of KOR. In general, our computational de novo platform overcomes extensive lead optimization encountered in ultra-large library docking and virtual small molecule screening campaigns and offers innovation for GPCR ligand discovery. This may drive the development of next-generation therapeutics for medical applications such as pain conditions.


Assuntos
Analgésicos Opioides , Receptores Opioides kappa , Masculino , Camundongos , Animais , Receptores Opioides kappa/metabolismo , Ligantes , Analgésicos Opioides/química , Receptores Opioides mu/metabolismo , Peptídeos Cíclicos/química
16.
Biomed Pharmacother ; 153: 113486, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076504

RESUMO

Ribosomally synthesized and post-translationally modified peptides, such as plant cyclotides, are a diverse group of natural products well known as templates in drug discovery and therapeutic lead development. The cyclotide kalata B1 (kB1) has previously been discovered as immunosuppressive agent on T-lymphocytes, and a synthetic version of this peptide, [T20K]kB1 (T20K), has been effective in reducing clinical symptoms, such as inflammation and demyelination, in a mouse model of multiple sclerosis. Based on its T-cell modulatory impact we studied the effects of T20K and several analogs on the proliferation of anaplastic large cell lymphoma (ALCL), a heterogeneous group of clinically aggressive diseases associated with poor prognosis. T20K, as a prototype drug candidate, induces apoptosis and a proliferation arrest in human lymphoma T-cell lines (SR786, Mac-2a and the Jurkat E6.1) in a concentration dependent fashion, at least partially via increased STAT5 and p53 signaling. In contrary to its effect on IL-2 signaling in lymphocytes, the cytokine levels are not altered in lymphoma cells. In vivo mouse experiments revealed a promising activity of T20K on these cancer cells including decreased tumor weight and increased apoptosis. This study opens novel avenues for developing cyclotide-based drug candidates for therapy of patients with ALCL.


Assuntos
Ciclotídeos , Linfoma Anaplásico de Células Grandes , Animais , Ciclotídeos/farmacologia , Citocinas/farmacologia , Humanos , Linfoma Anaplásico de Células Grandes/tratamento farmacológico , Camundongos , Linfócitos T
17.
Front Pharmacol ; 12: 707596, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322026

RESUMO

Traditional medicine and the use of herbal remedies are well established in the African health care system. For instance, Violaceae plants are used for antimicrobial or anti-inflammatory applications in folk medicine. This study describes the phytochemical analysis and bioactivity screening of four species of the violet tribe Allexis found in Cameroon. Allexis cauliflora, Allexis obanensis, Allexis batangae and Allexis zygomorpha were evaluated for the expression of circular peptides (cyclotides) by mass spectrometry. The unique cyclic cystine-rich motif was identified in several peptides of all four species. Knowing that members of this peptide family are protease inhibitors, the plant extracts were evaluated for the inhibition of human prolyl oligopeptidase (POP). Since all four species inhibited POP activity, a bioactivity-guided fractionation approach was performed to isolate peptide inhibitors. These novel cyclotides, alca 1 and alca 2 exhibited IC50 values of 8.5 and 4.4 µM, respectively. To obtain their amino acid sequence information, combinatorial enzymatic proteolysis was performed. The proteolytic fragments were evaluated in MS/MS fragmentation experiments and the full-length amino acid sequences were obtained by de novo annotation of fragment ions. In summary, this study identified inhibitors of the human protease POP, which is a drug target for inflammatory or neurodegenerative disorders.

18.
Cancers (Basel) ; 13(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066760

RESUMO

In order to comprehensively expose cancer-related biochemical changes, we compared the platelet proteome of two types of cancer with a high risk of thrombosis (22 patients with brain cancer, 19 with lung cancer) to 41 matched healthy controls using unbiased two-dimensional differential in-gel electrophoresis. The examined platelet proteome was unchanged in patients with brain cancer, but considerably affected in lung cancer with 15 significantly altered proteins. Amongst these, the endoplasmic reticulum (ER) proteins calreticulin (CALR), endoplasmic reticulum chaperone BiP (HSPA5) and protein disulfide-isomerase (P4HB) were significantly elevated. Accelerated conversion of the fibrin stabilising factor XIII was detected in platelets of patients with lung cancer by elevated levels of a coagulation factor XIII (F13A1) 55 kDa fragment. A significant correlation of this F13A1 cleavage product with plasma levels of the plasmin-α-2-antiplasmin complex and D-dimer suggests its enhanced degradation by the fibrinolytic system. Protein association network analysis showed that lung cancer-related proteins were involved in platelet degranulation and upregulated ER protein processing. As a possible outcome, plasma FVIII, an immediate end product for ER-mediated glycosylation, correlated significantly with the ER-executing chaperones CALR and HSPA5. These new data on the differential behaviour of platelets in various cancers revealed F13A1 and ER chaperones as potential novel diagnostic and therapeutic targets in lung cancer patients.

19.
ACS Chem Biol ; 16(11): 2373-2386, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34592097

RESUMO

The cyclotide T20K inhibits the proliferation of human immune cells and is currently in clinical trials for multiple sclerosis. Here, we provide novel functional data and mechanistic insights into structure-activity relationships of T20K. Analogs with partial or complete reduction of the cystine knot had loss of function in proliferation experiments. Similarly, an acyclic analog of T20K was inactive in lymphocyte bioassays. The lack of activity of non-native peptide analogs appears to be associated with the ability of cyclotides to interact with and penetrate cell membranes, since cellular uptake studies demonstrated fast fractional transfer only of the native peptide into the cytosol of human immune cells. Therefore, structural differences between cyclic and linear native folded peptides were investigated by NMR to elucidate structure-activity relationships. Acyclic T20K had a less rigid backbone and considerable structural changes in loops 1 and 6 compared to the native cyclic T20K, supporting the idea that the cyclic cystine knot motif is a unique bioactive scaffold. This study provides evidence that this structural motif in cyclotides governs bioactivity, interactions with and transport across biological membranes, and the structural integrity of these peptides. These observations could be useful to understand the structure-activity of other cystine knot proteins due to the structural conservation of the cystine knot motif across evolution and to provide guidance for the design of novel cyclic cysteine-stabilized molecules.


Assuntos
Ciclotídeos/química , Ciclotídeos/farmacologia , Motivos Nó de Cisteína , Imunossupressores/farmacologia , Proliferação de Células/efeitos dos fármacos , Ciclotídeos/metabolismo , Humanos , Imunossupressores/metabolismo , Monócitos/citologia , Monócitos/efeitos dos fármacos , Conformação Proteica
20.
Chem Sci ; 12(11): 4057-4062, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-34163676

RESUMO

Vasopressin (VP) and oxytocin (OT) are cyclic neuropeptides that regulate fundamental physiological functions via four G protein-coupled receptors, V1aR, V1bR, V2R, and OTR. Ligand development remains challenging for these receptors due to complex structure-activity relationships. Here, we investigated dimerization as a strategy for developing ligands with novel pharmacology. We regioselectively synthesised and systematically studied parallel, antiparallel and N- to C-terminal cyclized homo- and heterodimer constructs of VP, OT and dVDAVP (1-deamino-4-valine-8-d-arginine-VP). All disulfide-linked dimers, except for the head-to-tail cyclized constructs, retained nanomolar potency despite the structural implications of dimerization. Our results support a single chain interaction for receptor activation. Dimer orientation had little impact on activity, except for the dVDAVP homodimers, where an antagonist to agonist switch was observed at the V1aR. This study provides novel insights into the structural requirements of VP/OT receptor activation and spotlights dimerization as a strategy to modulate pharmacology, a concept also frequently observed in nature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA