Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876741

RESUMO

As the effects of anthropogenic climate change become more severe, several approaches for deliberate climate intervention to reduce or stabilize Earth's surface temperature have been proposed. Solar radiation modification (SRM) is one potential approach to partially counteract anthropogenic warming by reflecting a small proportion of the incoming solar radiation to increase Earth's albedo. While climate science research has focused on the predicted climate effects of SRM, almost no studies have investigated the impacts that SRM would have on ecological systems. The impacts and risks posed by SRM would vary by implementation scenario, anthropogenic climate effects, geographic region, and by ecosystem, community, population, and organism. Complex interactions among Earth's climate system and living systems would further affect SRM impacts and risks. We focus here on stratospheric aerosol intervention (SAI), a well-studied and relatively feasible SRM scheme that is likely to have a large impact on Earth's surface temperature. We outline current gaps in knowledge about both helpful and harmful predicted effects of SAI on ecological systems. Desired ecological outcomes might also inform development of future SAI implementation scenarios. In addition to filling these knowledge gaps, increased collaboration between ecologists and climate scientists would identify a common set of SAI research goals and improve the communication about potential SAI impacts and risks with the public. Without this collaboration, forecasts of SAI impacts will overlook potential effects on biodiversity and ecosystem services for humanity.

2.
Proc Natl Acad Sci U S A ; 115(10): E2284-E2291, 2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463695

RESUMO

Climate-mediated changes in hybridization will dramatically alter the genetic diversity, adaptive capacity, and evolutionary trajectory of interbreeding species. Our ability to predict the consequences of such changes will be key to future conservation and management decisions. Here we tested through simulations how recent warming (over the course of a 32-y period) is affecting the geographic extent of a climate-mediated developmental threshold implicated in maintaining a butterfly hybrid zone (Papilio glaucus and Papilio canadensis; Lepidoptera: Papilionidae). These simulations predict a 68-km shift of this hybrid zone. To empirically test this prediction, we assessed genetic and phenotypic changes using contemporary and museum collections and document a 40-km northward shift of this hybrid zone. Interactions between the two species appear relatively unchanged during hybrid zone movement. We found no change in the frequency of hybridization, and regions of the genome that experience little to no introgression moved largely in concert with the shifting hybrid zone. Model predictions based on climate scenarios predict this hybrid zone will continue to move northward, but with substantial spatial heterogeneity in the velocity (55-144 km/1 °C), shape, and contiguity of movement. Our findings suggest that the presence of nonclimatic barriers (e.g., genetic incompatibilities) and/or nonlinear responses to climatic gradients may preserve species boundaries as the species shift. Further, we show that variation in the geography of hybrid zone movement could result in evolutionary responses that differ for geographically distinct populations spanning hybrid zones, and thus have implications for the conservation and management of genetic diversity.


Assuntos
Borboletas/genética , Mudança Climática , Ecossistema , Animais , Cruzamento , Borboletas/fisiologia , Feminino , Variação Genética , Genômica , Geografia , Hibridização Genética , Masculino , Modelos Biológicos , Museus/estatística & dados numéricos
3.
Mol Ecol ; 26(18): 4725-4742, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28727195

RESUMO

Hybrid zones are a valuable tool for studying the process of speciation and for identifying the genomic regions undergoing divergence and the ecological (extrinsic) and nonecological (intrinsic) factors involved. Here, we explored the genomic and geographic landscape of divergence in a hybrid zone between Papilio glaucus and Papilio canadensis. Using a genome scan of 28,417 ddRAD SNPs, we identified genomic regions under possible selection and examined their distribution in the context of previously identified candidate genes for ecological adaptations. We showed that differentiation was genomewide, including multiple candidate genes for ecological adaptations, particularly those involved in seasonal adaptation and host plant detoxification. The Z chromosome and four autosomes showed a disproportionate amount of differentiation, suggesting genes on these chromosomes play a potential role in reproductive isolation. Cline analyses of significantly differentiated genomic SNPs, and of species-diagnostic genetic markers, showed a high degree of geographic coincidence (81%) and concordance (80%) and were associated with the geographic distribution of a climate-mediated developmental threshold (length of the growing season). A relatively large proportion (1.3%) of the outliers for divergent selection were not associated with candidate genes for ecological adaptations and may reflect the presence of previously unrecognized intrinsic barriers between these species. These results suggest that exogenous (climate-mediated) and endogenous (unknown) clines may have become coupled and act together to reinforce reproductive isolation. This approach of assessing divergence across both the genomic and geographic landscape can provide insight about the interplay between the genetic architecture of reproductive isolation and endogenous and exogenous selection.


Assuntos
Borboletas/genética , Clima , Especiação Genética , Hibridização Genética , Adaptação Biológica/genética , Animais , Genoma de Inseto , Genômica , Illinois , Masculino , Michigan , Polimorfismo de Nucleotídeo Único , Isolamento Reprodutivo , Wisconsin
4.
Ecol Appl ; 26(4): 1154-69, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27509755

RESUMO

Species distribution models (SDMs) have been criticized for involving assumptions that ignore or categorize many ecologically relevant factors such as dispersal ability and biotic interactions. Another potential source of model error is the assumption that species are ecologically uniform in their climatic tolerances across their range. Typically, SDMs treat a species as a single entity, although populations of many species differ due to local adaptation or other genetic differentiation. Not taking local adaptation into account may lead to incorrect range prediction and therefore misplaced conservation efforts. A constraint is that we often do not know the degree to which populations are locally adapted. Lacking experimental evidence, we still can evaluate niche differentiation within a species' range to promote better conservation decisions. We explore possible conservation implications of making type I or type II errors in this context. For each of two species, we construct three separate Max-Ent models, one considering the species as a single population and two of disjunct populations. Principal component analyses and response curves indicate different climate characteristics in the current environments of the populations. Model projections into future climates indicate minimal overlap between areas predicted to be climatically suitable by the whole species vs. population-based models. We present a workflow for addressing uncertainty surrounding local adaptation in SDM application and illustrate the value of conducting population-based models to compare with whole-species models. These comparisons might result in more cautious management actions when alternative range outcomes are considered.


Assuntos
Adaptação Fisiológica/fisiologia , Borboletas/fisiologia , Mudança Climática , Conservação dos Recursos Naturais/métodos , Modelos Biológicos , Primula/fisiologia , Animais , Espécies em Perigo de Extinção , Monitoramento Ambiental , Dinâmica Populacional
5.
Mol Ecol ; 23(11): 2686-98, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24766086

RESUMO

Local adaptation of populations could preclude or slow range expansions in response to changing climate, particularly when dispersal is limited. To investigate the differential responses of populations to changing climatic conditions, we exposed poleward peripheral and central populations of two Lepidoptera to reciprocal, common-garden climatic conditions and compared their whole-transcriptome expression. We found evidence of simple population differentiation in both species, and in the species with previously identified population structure and phenotypic local adaptation, we found several hundred genes that responded in a synchronized and localized fashion. These genes were primarily involved in energy metabolism and oxidative stress, and expression levels were most divergent between populations in the same environment in which we previously detected divergence for metabolism. We found no localized genes in the species with less population structure and for which no local adaptation was previously detected. These results challenge the assumption that species are functionally similar across their ranges and poleward peripheral populations are preadapted to warmer conditions. Rather, some taxa deserve population-level consideration when predicting the effects of climate change because they respond in genetically based, distinctive ways to changing conditions.


Assuntos
Aclimatação/genética , Mudança Climática , Genética Populacional , Lepidópteros/genética , Animais , Feminino , Expressão Gênica , Lepidópteros/classificação , Dados de Sequência Molecular , América do Norte , Dinâmica Populacional , Especificidade da Espécie , Temperatura , Transcriptoma
6.
Artigo em Inglês | MEDLINE | ID: mdl-25139402

RESUMO

Seasonally-acquired cold tolerance can be reversed at warm temperatures, leaving temperate ectotherms vulnerable to cold snaps. However, deacclimation, and its underlying mechanisms, has not been well-explored in insects. Swallowtail butterflies are widely distributed but in some cases their range is limited by low temperature and their cold tolerance is seasonally acquired, implying that they experience mortality resulting from deacclimation. We investigated cold tolerance and hemolymph composition of Anise swallowtail (Papilio zelicaon) pupae during overwintering in the laboratory, and after four days exposure to warm temperatures in spring. Overwintering pupae had supercooling points around -20.5°C and survived brief exposures to -30°C, suggesting partial freeze tolerance. Overwintering pupae had hemolymph osmolality of approximately 920 mOsm, imparted by high concentrations of glycerol, K⁺ and Na⁺. After exposure to spring warming, supercooling points increased to approximately -17°C, and survival of a 1h exposure to -20°C decreased from 100% to 0%. This deacclimation was associated with decreased hemolymph osmolality and reduced glycerol, trehalose, Na⁺ and Ca²âº concentrations. We compared cold tolerance of pupae to weather conditions at and beyond the species' northern range boundary. Minimum temperatures at the range boundary approached the lower lethal temperature of pupae, and were colder north of the range, suggesting that cold hardiness may set northern range limits. Minimum temperatures following warm snaps were likely to cause mortality in at least one of the past three years. Cold snaps in the spring are increasing in frequency as a result of global climate change, so are likely to be a significant source of mortality for this species, and other temperate ectotherms.


Assuntos
Aclimatação , Borboletas/fisiologia , Modelos Biológicos , Animais , Colúmbia Britânica , Borboletas/crescimento & desenvolvimento , Mudança Climática , Temperatura Baixa/efeitos adversos , Regulação para Baixo , Glicerol/metabolismo , Hemolinfa/metabolismo , Concentração Osmolar , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , Estações do Ano , Análise de Sobrevida , Trealose/metabolismo , Equilíbrio Hidroeletrolítico
7.
Ecology ; 94(5): 1015-24, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23858642

RESUMO

The loss of natural enemies is a key feature of species introductions and is assumed to facilitate the increased success of species in new locales (enemy release hypothesis; ERH). The ERH is rarely tested experimentally, however, and is often assumed from observations of enemy loss. We provide a rigorous test of the link between enemy loss and enemy release by conducting observational surveys and an in situ parasitoid exclusion experiment in multiple locations in the native and introduced ranges of a gall-forming insect, Neuroterus saltatorius, which was introduced poleward, within North America. Observational surveys revealed that the gall-former experienced increased demographic success and lower parasitoid attack in the introduced range. Also, a different composition of parasitoids attacked the gall-former in the introduced range. These observational results show that enemies were lost and provide support for the ERH. Experimental results, however, revealed that, while some enemy release occurred, it was not the sole driver of demographic success. This was because background mortality in the absence of enemies was higher in the native range than in the introduced range, suggesting that factors other than parasitoids limit the species in its native range and contribute to its success in its introduced range. Our study demonstrates the importance of measuring the effect of enemies in the context of other community interactions in both ranges to understand what factors cause the increased demographic success of introduced species. This case also highlights that species can experience very different dynamics when introduced into ecologically similar communities.


Assuntos
Insetos/fisiologia , Insetos/parasitologia , Espécies Introduzidas , Animais , Demografia , Interações Hospedeiro-Parasita , América do Norte
8.
PLoS One ; 18(11): e0262382, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37934780

RESUMO

The Karner blue butterfly (Lycaeides melissa samuelis, or Kbb), a federally endangered species under the U.S. Endangered Species Act in decline due to habitat loss, can be further threatened by climate change. Evaluating how climate shapes the population trend of the Kbb can help in the development of adaptive management plans. Current demographic models for the Kbb incorporate in either a density-dependent or density-independent manner. We instead created mixed density-dependent and -independent (hereafter "endo-exogenous") models for Kbbs based on long-term count data of five isolated populations in the upper Midwest, United States during two flight periods (May to June and July to August) to understand how the growth rates were related to previous population densities and abiotic environmental conditions, including various macro- and micro-climatic variables. Our endo-exogenous extinction risk models showed that both density-dependent and -independent components were vital drivers of the historical population trends. However, climate change impacts were not always detrimental to Kbbs. Despite the decrease of population growth rate with higher overwinter temperatures and spring precipitations in the first generation, the growth rate increased with higher summer temperatures and precipitations in the second generation. We concluded that finer spatiotemporally scaled models could be more rewarding in guiding the decision-making process of Kbb restoration under climate change.


Assuntos
Borboletas , Animais , Estados Unidos , Mudança Climática , Espécies em Perigo de Extinção , Ecossistema , Densidade Demográfica
9.
Proc Natl Acad Sci U S A ; 106(27): 11160-5, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19549861

RESUMO

There is a pressing need to predict how species will change their geographic ranges under climate change. Projections typically assume that temperature is a primary fitness determinant and that populations near the poleward (and upward) range boundary are preadapted to warming. Thus, poleward, peripheral populations will increase with warming, and these increases facilitate poleward range expansions. We tested the assumption that poleward, peripheral populations are enhanced by warming using 2 butterflies (Erynnis propertius and Papilio zelicaon) that co-occur and have contrasting degrees of host specialization and interpopulation genetic differentiation. We performed a reciprocal translocation experiment between central and poleward, peripheral populations in the field and simulated a translocation experiment that included alternate host plants. We found that the performance of both central and peripheral populations of E. propertius were enhanced during the summer months by temperatures characteristic of the range center but that local adaptation of peripheral populations to winter conditions near the range edge could counteract that enhancement. Further, poleward range expansion in this species is prevented by a lack of host plants. In P. zelicaon, the fitness of central and peripheral populations decreased under extreme summer temperatures that occurred in the field at the range center. Performance in this species also was affected by an interaction of temperature and host plant such that host species strongly mediated the fitness of peripheral individuals under differing simulated temperatures. Altogether we have evidence that facilitation of poleward range shifts through enhancement of peripheral populations is unlikely in either study species.


Assuntos
Migração Animal , Borboletas/crescimento & desenvolvimento , Clima , Animais , Metabolismo Basal , Tamanho Corporal , Borboletas/anatomia & histologia , Dinâmica Populacional , Análise de Sobrevida
10.
Proc Natl Acad Sci U S A ; 106(24): 9721-4, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19509337

RESUMO

Managed relocation (MR) has rapidly emerged as a potential intervention strategy in the toolbox of biodiversity management under climate change. Previous authors have suggested that MR (also referred to as assisted colonization, assisted migration, or assisted translocation) could be a last-alternative option after interrogating a linear decision tree. We argue that numerous interacting and value-laden considerations demand a more inclusive strategy for evaluating MR. The pace of modern climate change demands decision making with imperfect information, and tools that elucidate this uncertainty and integrate scientific information and social values are urgently needed. We present a heuristic tool that incorporates both ecological and social criteria in a multidimensional decision-making framework. For visualization purposes, we collapse these criteria into 4 classes that can be depicted in graphical 2-D space. This framework offers a pragmatic approach for summarizing key dimensions of MR: capturing uncertainty in the evaluation criteria, creating transparency in the evaluation process, and recognizing the inherent tradeoffs that different stakeholders bring to evaluation of MR and its alternatives.


Assuntos
Biodiversidade , Animais , Incerteza
11.
BMC Genomics ; 11: 310, 2010 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-20478048

RESUMO

BACKGROUND: Several recent studies have demonstrated the use of Roche 454 sequencing technology for de novo transcriptome analysis. Low error rates and high coverage also allow for effective SNP discovery and genetic diversity estimates. However, genetically diverse datasets, such as those sourced from natural populations, pose challenges for assembly programs and subsequent analysis. Further, estimating the effectiveness of transcript discovery using Roche 454 transcriptome data is still a difficult task. RESULTS: Using the Roche 454 FLX Titanium platform, we sequenced and assembled larval transcriptomes for two butterfly species: the Propertius duskywing, Erynnis propertius (Lepidoptera: Hesperiidae) and the Anise swallowtail, Papilio zelicaon (Lepidoptera: Papilionidae). The Expressed Sequence Tags (ESTs) generated represent a diverse sample drawn from multiple populations, developmental stages, and stress treatments. Despite this diversity, > 95% of the ESTs assembled into long (> 714 bp on average) and highly covered (> 9.6x on average) contigs. To estimate the effectiveness of transcript discovery, we compared the number of bases in the hit region of unigenes (contigs and singletons) to the length of the best match silkworm (Bombyx mori) protein--this "ortholog hit ratio" gives a close estimate on the amount of the transcript discovered relative to a model lepidopteran genome. For each species, we tested two assembly programs and two parameter sets; although CAP3 is commonly used for such data, the assemblies produced by Celera Assembler with modified parameters were chosen over those produced by CAP3 based on contig and singleton counts as well as ortholog hit ratio analysis. In the final assemblies, 1,413 E. propertius and 1,940 P. zelicaon unigenes had a ratio > 0.8; 2,866 E. propertius and 4,015 P. zelicaon unigenes had a ratio > 0.5. CONCLUSIONS: Ultimately, these assemblies and SNP data will be used to generate microarrays for ecoinformatics examining climate change tolerance of different natural populations. These studies will benefit from high quality assemblies with few singletons (less than 26% of bases for each assembled transcriptome are present in unassembled singleton ESTs) and effective transcript discovery (over 6,500 of our putative orthologs cover at least 50% of the corresponding model silkworm gene).


Assuntos
Perfilação da Expressão Gênica/métodos , Lepidópteros/genética , Análise de Sequência de DNA/métodos , Animais , Bombyx/genética , Análise por Conglomerados , Feminino , Genes de Insetos/genética , Masculino , Polimorfismo de Nucleotídeo Único/genética
12.
Ecology ; 91(11): 3284-93, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21141189

RESUMO

Phytophagous insects commonly interact through shared host plants. These interactions, however, do not occur in accordance with traditional paradigms of competition, and competition in phytophagous insects is still being defined. It remains unclear, for example, if particular guilds of insects are superior competitors or important players in structuring insect communities. Gall-forming insects are likely candidates for such superior competitors because of their ability to manipulate host plants, but their role as competitors is understudied. We investigate the effect of invasive populations of an oak gall wasp, Neuroterus saltatorius, on a native specialist butterfly, Erynnis propertius, as mediated by their shared host plant, Quercus garryana. This gall wasp occurs at high densities in its introduced range, where we stocked enclosures with caterpillars on trees that varied in gall wasp density. Biomass production of butterflies was lower in enclosures on high-density than on low-density trees because overwintering caterpillars were smaller, and fewer of them eclosed into adults the following spring. To see if the gall wasp induced changes in foliar quality, we measured host plant quality before and after gall induction on 30 trees each at two sites. We found a positive relationship between gall wasp density and the percentage change in foliar C:N, a negative relationship between gall wasp density and the percentage change in foliar water at one site, and no relationship between the percentage change in protein-binding capacity (i.e., phenolics) and gall-wasp density. Additionally, there was a negative relationship between foliar quality and butterfly performance. Our results provide evidence for a plant-mediated impact of an invasive oak gall wasp on a native butterfly and suggest that gall wasps could act as superior competitors, especially when they occur at high densities.


Assuntos
Ecossistema , Comportamento Alimentar/fisiologia , Espécies Introduzidas , Lepidópteros/fisiologia , Vespas/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais
13.
Biol Lett ; 6(2): 274-7, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-19923135

RESUMO

The hygric hypothesis postulates that insect discontinuous gas exchange cycles (DGCs) are an adaptation that reduces respiratory water loss (RWL), but evidence is lacking for reduction of water loss by insects expressing DGCs under normal ecological conditions. Larvae of Erynnis propertius (Lepidoptera: Hesperiidae) naturally switch between DGCs and continuous gas exchange (CGE), allowing flow-through respirometry comparisons of water loss between the two modes. Water loss was lower during DGCs than CGE, both between individuals using different patterns and within individuals using both patterns. The hygric cost of gas exchange (water loss associated with carbon dioxide release) and the contribution of respiratory to total water loss were lower during DGCs. Metabolic rate did not differ between DGCs and CGE. Thus, DGCs reduce RWL in E. propertius, which is consistent with the suggestion that water loss reduction could account for the evolutionary origin and/or maintenance of DGCs in insects.


Assuntos
Adaptação Biológica/fisiologia , Evolução Biológica , Borboletas/fisiologia , Transporte Respiratório/fisiologia , Perda Insensível de Água/fisiologia , Análise de Variância , Animais , Colúmbia Britânica , Metabolismo Energético/fisiologia , Larva/fisiologia , Análise de Regressão
14.
Conserv Biol ; 22(3): 562-7, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18577085

RESUMO

To reduce the risk of extinction due to climate change, some ecologists have suggested human-aided translocation of species, or assisted migration (AM), to areas where climate is projected to become suitable. Such intentional movement, however, may create new invasive species if successful introductions grow out of control and cause ecologic or economic damage. We assessed this risk by surveying invasive species in the United States and categorizing invaders based on origin. Because AM will involve moving species on a regional scale within continents (i.e., range shifts), we used invasive species with an intracontinental origin as a proxy for species that would be moved through AM. We then determined whether intracontinental invasions were more prevalent or harmful than intercontinental invasions. Intracontinental invasions occurred far less frequently than invasions from other continents, but they were just as likely to have had severe effects. Fish and crustaceans pose a particularly high threat of intracontinental invasion. We conclude that the risk of AM to create novel invasive species is small, but assisted species that do become invasive could have large effects. Past experience with species reintroductions may help inform policy regarding AM.


Assuntos
Conservação dos Recursos Naturais , Atividades Humanas , Animais , Crustáceos , Demografia , Ecossistema , Monitoramento Ambiental , Peixes , Efeito Estufa , Modelos Biológicos , Estados Unidos
15.
Conserv Biol ; 22(3): 534-43, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18577082

RESUMO

Scientific and societal unknowns make it difficult to predict how global environmental changes such as climate change and biological invasions will affect ecological systems. In the long term, these changes may have interacting effects and compound the uncertainty associated with each individual driver. Nonetheless, invasive species are likely to respond in ways that should be qualitatively predictable, and some of these responses will be distinct from those of native counterparts. We used the stages of invasion known as the "invasion pathway" to identify 5 nonexclusive consequences of climate change for invasive species: (1) altered transport and introduction mechanisms, (2) establishment of new invasive species, (3) altered impact of existing invasive species, (4) altered distribution of existing invasive species, and (5) altered effectiveness of control strategies. We then used these consequences to identify testable hypotheses about the responses of invasive species to climate change and provide suggestions for invasive-species management plans. The 5 consequences also emphasize the need for enhanced environmental monitoring and expanded coordination among entities involved in invasive-species management.


Assuntos
Conservação dos Recursos Naturais , Efeito Estufa , Clima , Demografia , Monitoramento Ambiental , Atividades Humanas
16.
Conserv Biol ; 22(3): 585-92, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18577088

RESUMO

Climate change and invasive species are often treated as important, but independent, issues. Nevertheless, they have strong connections: changes in climate and societal responses to climate change may exacerbate the impacts of invasive species, whereas invasive species may affect the magnitude, rate, and impact of climate change. We argue that the design and implementation of climate-change policy in the United States should specifically consider the implications for invasive species; conversely, invasive-species policy should address consequences for climate change. The development of such policies should be based on (1) characterization of interactions between invasive species and climate change, (2) identification of areas where climate-change policies could negatively affect invasive-species management, and (3) identification of areas where policies could benefit from synergies between climate change and invasive-species management.


Assuntos
Conservação dos Recursos Naturais/tendências , Monitoramento Ambiental/métodos , Efeito Estufa , Política Pública , Adaptação Fisiológica , Animais , Fontes de Energia Bioelétrica , Clima , Demografia , Ecossistema , Phalaris/fisiologia , Poaceae/fisiologia , Roedores/fisiologia , Estados Unidos
17.
Sustainability ; 9(5)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-29707262

RESUMO

The relationship between climate change and human migration is not homogenous and depends critically on the differential vulnerability of population and places. If places and populations are not vulnerable, or susceptible, to climate change, then the climate-migration relationship may not materialize. The key to understanding and, from a policy perspective, planning for whether and how climate change will impact future migration patterns is therefore knowledge of the link between climate vulnerability and migration. However, beyond specific case studies, little is known about this association in global perspective. We therefore provide a descriptive, country-level portrait of this relationship. We show that the negative association between climate vulnerability and international migration holds only for countries least vulnerable to climate change, which suggests the potential for trapped populations in more vulnerable countries. However, when analyzed separately by life supporting sector (food, water, health, ecosystem services, human habitat, and infrastructure) and vulnerability dimension (exposure, sensitivity, and adaptive capacity), we detect evidence of a relationship among more, but not the most, vulnerable countries. The bilateral (i.e., country-to-country) migration show that, on average, people move from countries of higher vulnerability to lower vulnerability, reducing global risk by 15%. This finding is consistent with the idea that migration is a climate adaptation strategy. Still, ~6% of bilateral migration is maladaptive with respect to climate change, with some movement toward countries with greater climate change vulnerability.

18.
Curr Opin Insect Sci ; 17: 92-97, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27720080

RESUMO

As climate change moves insect systems into uncharted territory, more knowledge about insect dynamics and the factors that drive them could enable us to better manage and conserve insect communities. Climate change may also require us to revisit insect management goals and strategies and lead to a new kind of scientific engagement in management decision-making. Here we make five key points about the role of insect science in aiding and crafting management decisions, and we illustrate those points with the monarch butterfly and the Karner blue butterfly, two species undergoing considerable change and facing new management dilemmas. Insect biology has a strong history of engagement in applied problems, and as the impacts of climate change increase, a reimagined ethic of entomology in service of broader society may emerge. We hope to motivate insect biologists to contribute time and effort toward solving the challenges of climate change.


Assuntos
Mudança Climática , Ecossistema , Insetos/fisiologia , Animais , Conservação dos Recursos Naturais/tendências , Tomada de Decisões , Entomologia/tendências
19.
Methods Enzymol ; 397: 292-308, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16260298

RESUMO

With the growing capacity to inventory microbial community diversity, the need for statistical methods to compare community inventories is also growing. Several approaches have been proposed for comparing the diversity of microbial communities: some adapted from traditional ecology and others designed specifically for molecular inventories of microbes. Rarefaction is one statistical method that is commonly applied in microbial studies, and this chapter discusses the procedure and its advantages and disadvantages. Rarefaction compares observed taxon richness at a standardized sampling effort using confidence intervals. Special emphasis is placed here on the need for precise, rather than unbiased, estimation methods in microbial ecology, but precision can be judged only with a very large sample or with multiple samples drawn from a single community. With low sample sizes, rarefaction curves also have the potential to lead to incorrect rankings of relative species richness, but this chapter discusses a new method with the potential to address this problem. Finally, this chapter shows how rarefaction can be applied to the comparison of the taxonomic similarity of microbial communities.


Assuntos
Ecologia/métodos , Estatística como Assunto/métodos , Bactérias/genética , Microbiologia Ambiental
20.
Oecologia ; 132(4): 538-548, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28547640

RESUMO

We compare results of field study and model analysis of two butterfly populations to evaluate the importance of alternative mechanisms causing changes in abundance. Although understanding and predicting population fluctuations is a central goal of population ecology, it is not often achieved because long-term abundance data are available for few populations in which mechanisms causing fluctuations also are known. Both kinds of information exist for two populations of the checkerspot butterfly, Euphydryas editha bayensis, which are matched in most ways except for habitat area and topography. We applied results from field study to make predictions about the dynamics of the two populations. Then we tested these predictions using nonlinear modeling of abundance data. Models included endogenous factors, exogenous effects of weather, or both. Results showed that the populations differed in variability and responses to endogenous and exogenous factors. The population in the more homogeneous habitat varied more widely, went extinct first, and fluctuated more severely with climate. Dynamics of the population occupying the topographically diverse habitat were more complex, containing damped oscillations and weaker influences of weather. We draw four main conclusions. First, the routes to extinction for E. e. bayensis populations in protected habitat were random walks driven by climatic variability. Climatic influences dominated both populations, but the timing and functional forms of climatic effects differed between populations. Second, topographic diversity reduced weather-induced population variability and increased persistence time. Third, one must explicitly consider both endogenous and exogenous components to fully understand population dynamics. Fourth, resolving the debate over population regulation requires integrating long-term population sampling, model analysis, and investigation of mechanisms in the field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA