Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 23(9): 1379-1392, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36002648

RESUMO

Cancer stem cells (CSCs) are a subpopulation of cancer cells endowed with high tumorigenic, chemoresistant and metastatic potential. Nongenetic mechanisms of acquired resistance are increasingly being discovered, but molecular insights into the evolutionary process of CSCs are limited. Here, we show that type I interferons (IFNs-I) function as molecular hubs of resistance during immunogenic chemotherapy, triggering the epigenetic regulator demethylase 1B (KDM1B) to promote an adaptive, yet reversible, transcriptional rewiring of cancer cells towards stemness and immune escape. Accordingly, KDM1B inhibition prevents the appearance of IFN-I-induced CSCs, both in vitro and in vivo. Notably, IFN-I-induced CSCs are heterogeneous in terms of multidrug resistance, plasticity, invasiveness and immunogenicity. Moreover, in breast cancer (BC) patients receiving anthracycline-based chemotherapy, KDM1B positively correlated with CSC signatures. Our study identifies an IFN-I → KDM1B axis as a potent engine of cancer cell reprogramming, supporting KDM1B targeting as an attractive adjunctive to immunogenic drugs to prevent CSC expansion and increase the long-term benefit of therapy.


Assuntos
Neoplasias da Mama , Epigênese Genética , Histona Desmetilases , Interferon Tipo I , Antraciclinas/metabolismo , Antraciclinas/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Histona Desmetilases/metabolismo , Humanos , Interferon Tipo I/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
2.
Cell ; 163(1): 202-17, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26388441

RESUMO

Cancer cells acquire pathological phenotypes through accumulation of mutations that perturb signaling networks. However, global analysis of these events is currently limited. Here, we identify six types of network-attacking mutations (NAMs), including changes in kinase and SH2 modulation, network rewiring, and the genesis and extinction of phosphorylation sites. We developed a computational platform (ReKINect) to identify NAMs and systematically interpreted the exomes and quantitative (phospho-)proteomes of five ovarian cancer cell lines and the global cancer genome repository. We identified and experimentally validated several NAMs, including PKCγ M501I and PKD1 D665N, which encode specificity switches analogous to the appearance of kinases de novo within the kinome. We discover mutant molecular logic gates, a drift toward phospho-threonine signaling, weakening of phosphorylation motifs, and kinase-inactivating hotspots in cancer. Our method pinpoints functional NAMs, scales with the complexity of cancer genomes and cell signaling, and may enhance our capability to therapeutically target tumor-specific networks.


Assuntos
Neoplasias Ovarianas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transdução de Sinais , Feminino , Humanos , Armazenamento e Recuperação da Informação , Modelos Moleculares , Mutação Puntual , Proteínas Quinases/química , Software
3.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673810

RESUMO

Cardiovascular diseases (CVDs) represent a major concern for global health, whose mechanistic understanding is complicated by a complex interplay between genetic predisposition and environmental factors. Specifically, heart failure (HF), encompassing dilated cardiomyopathy (DC), ischemic cardiomyopathy (ICM), and hypertrophic cardiomyopathy (HCM), is a topic of substantial interest in basic and clinical research. Here, we used a Partial Correlation Coefficient-based algorithm (PCC) within the context of a meta-analysis framework to construct a Gene Regulatory Network (GRN) that identifies key regulators whose activity is perturbed in Heart Failure. By integrating data from multiple independent studies, our approach unveiled crucial regulatory associations between transcription factors (TFs) and structural genes, emphasizing their pivotal roles in regulating metabolic pathways, such as fatty acid metabolism, oxidative stress response, epithelial-to-mesenchymal transition, and coagulation. In addition to known associations, our analysis also identified novel regulators, including the identification of TFs FPM315 and OVOL2, which are implicated in dilated cardiomyopathies, and TEAD1 and TEAD2 in both dilated and ischemic cardiomyopathies. Moreover, we uncovered alterations in adipogenesis and oxidative phosphorylation pathways in hypertrophic cardiomyopathy and discovered a role for IL2 STAT5 signaling in heart failure. Our findings underscore the importance of TF activity in the initiation and progression of cardiac disease, highlighting their potential as pharmacological targets.


Assuntos
Doenças Cardiovasculares , Redes Reguladoras de Genes , Fatores de Transcrição , Humanos , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regulação da Expressão Gênica , Algoritmos , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo
4.
Nucleic Acids Res ; 49(W1): W67-W71, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34038531

RESUMO

The interaction between RNA and RNA-binding proteins (RBPs) has a key role in the regulation of gene expression, in RNA stability, and in many other biological processes. RBPs accomplish these functions by binding target RNA molecules through specific sequence and structure motifs. The identification of these binding motifs is therefore fundamental to improve our knowledge of the cellular processes and how they are regulated. Here, we present BRIO (BEAM RNA Interaction mOtifs), a new web server designed for the identification of sequence and structure RNA-binding motifs in one or more RNA molecules of interest. BRIO enables the user to scan over 2508 sequence motifs and 2296 secondary structure motifs identified in Homo sapiens and Mus musculus, in three different types of experiments (PAR-CLIP, eCLIP, HITS). The motifs are associated with the binding of 186 RBPs and 69 protein domains. The web server is freely available at http://brio.bio.uniroma2.it.


Assuntos
Proteínas de Ligação a RNA/metabolismo , RNA/química , Software , Animais , Sequência de Bases , Linhagem Celular , Humanos , Internet , Camundongos , Motivos de Nucleotídeos , RNA/metabolismo , RNA Nuclear Pequeno/metabolismo , RNA Viral/metabolismo , Análise de Sequência de RNA
5.
Plant Foods Hum Nutr ; 78(2): 399-406, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37256506

RESUMO

Literature has proposed the existence of a cross kingdom regulation (CRK) between human and plants. In this context, microRNAs present in edible plants would be acquired through diet by the consumer's organism and transported via bloodstream to tissues, where they would modulate gene expression. However, the validity of this phenomenon is strongly debated; indeed, some scholars have discussed both the methodologies and the results obtained in previous works. To date, only one study has performed a bioinformatics analysis on small RNA-sequencing data for checking the presence of plant miRNAs (pmiRNAs) in human plasma. For that investigation, the lack of reliable controls, which led to the misidentification of human RNAs as pmiRNAs, has been deeply criticized. Thus, in the present contribution, we aim to demonstrate the existence of pmiRNAs in human blood, adopting a bioinformatics approach characterized by more stringent conditions and filtering. The information obtained from 380 experiments produced in 5 different next generation sequencing (NGS) projects was examined, revealing the presence of 350 circulating pmiRNAs across the analysed data set. Although one of the NGS projects shows results likely to be attributed to sample contamination, the others appear to provide reliable support for the acquisition of pmiRNAs through diet. To infer the potential biological activity of the identified pmiRNAs, we predicted their putative human mRNA targets, finding with great surprise that they appear to be mainly involved in neurogenesis and nervous system development. Unfortunately, no consensus was identified within the sequences of detected pmiRNAs, in order to justify their stability or capability to be preserved in human plasma. We believe that the issue regarding CKR still needs further clarifications, even if the present findings would offer a solid support that this hypothesis is not impossible.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , Dieta , Plantas Comestíveis/genética , Biologia Computacional , RNA de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Regulação da Expressão Gênica de Plantas
6.
Nucleic Acids Res ; 47(10): 4958-4969, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31162604

RESUMO

RNA molecules are able to bind proteins, DNA and other small or long RNAs using information at primary, secondary or tertiary structure level. Recent techniques that use cross-linking and immunoprecipitation of RNAs can detect these interactions and, if followed by high-throughput sequencing, molecules can be analysed to find recurrent elements shared by interactors, such as sequence and/or structure motifs. Many tools are able to find sequence motifs from lists of target RNAs, while others focus on structure using different approaches to find specific interaction elements. In this work, we make a systematic analysis of RBP-RNA and RNA-RNA datasets to better characterize the interaction landscape with information about multi-motifs on the same RNAs. To achieve this goal, we updated our BEAM algorithm to combine both sequence and structure information to create pairs of patterns that model motifs of interaction. This algorithm was applied to several RNA binding proteins and ncRNAs interactors, confirming already known motifs and discovering new ones. This landscape analysis on interaction variability reflects the diversity of target recognition and underlines that often both primary and secondary structure are involved in molecular recognition.


Assuntos
Motivos de Nucleotídeos , Proteínas de Ligação a RNA/química , RNA/química , Análise de Sequência de RNA/métodos , Algoritmos , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Células HEK293 , Células Hep G2 , Humanos , Células K562 , Camundongos , MicroRNAs/química , MicroRNAs/genética , MicroRNAs/metabolismo , Ligação Proteica , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
7.
Bioinformatics ; 35(3): 372-379, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30016513

RESUMO

Motivation: Signaling and metabolic pathways are finely regulated by a network of protein phosphorylation events. Unraveling the nature of this intricate network, composed of kinases, target proteins and their interactions, is therefore of crucial importance. Although thousands of kinase-specific phosphorylations (KsP) have been annotated in model organisms their kinase-target network is far from being complete, with less studied organisms lagging behind. Results: In this work, we achieved an automated and accurate identification of kinase domains, inferring the residues that most likely contribute to peptide specificity. We integrated this information with the target peptides of known human KsP to predict kinase-specific interactions in other eukaryotes through a deep neural network, outperforming similar methods. We analyzed the differential conservation of kinase specificity among eukaryotes revealing the high conservation of the specificity of tyrosine kinases. With this approach we discovered 1590 novel KsP of potential clinical relevance in the human proteome. Availability and implementation: http://akid.bio.uniroma2.it. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Fosfotransferases/química , Proteoma , Transdução de Sinais , Eucariotos , Humanos , Fosforilação
8.
Bioinformatics ; 34(6): 1058-1060, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29095974

RESUMO

Motivation: RNA structural motif finding is a relevant problem that becomes computationally hard when working on high-throughput data (e.g. eCLIP, PAR-CLIP), often represented by thousands of RNA molecules. Currently, the BEAM server is the only web tool capable to handle tens of thousands of RNA in input with a motif discovery procedure that is only limited by the current secondary structure prediction accuracies. Results: The recently developed method BEAM (BEAr Motifs finder) can analyze tens of thousands of RNA molecules and identify RNA secondary structure motifs associated to a measure of their statistical significance. BEAM is extremely fast thanks to the BEAR encoding that transforms each RNA secondary structure in a string of characters. BEAM also exploits the evolutionary knowledge contained in a substitution matrix of secondary structure elements, extracted from the RFAM database of families of homologous RNAs. The BEAM web server has been designed to streamline data pre-processing by automatically handling folding and encoding of RNA sequences, giving users a choice for the preferred folding program. The server provides an intuitive and informative results page with the list of secondary structure motifs identified, the logo of each motif, its significance, graphic representation and information about its position in the RNA molecules sharing it. Availability and implementation: The web server is freely available at http://beam.uniroma2.it/ and it is implemented in NodeJS and Python with all major browsers supported. Contact: marco.pietrosanto@uniroma2.it. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
RNA/química , Sequência de Bases , Bases de Dados Factuais , Internet , Motivos de Nucleotídeos , Análise de Sequência de RNA , Software
9.
Brief Bioinform ; 17(1): 106-16, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26041786

RESUMO

Long non-coding RNAs (lncRNAs) are associated to a plethora of cellular functions, most of which require the interaction with one or more RNA-binding proteins (RBPs); similarly, RBPs are often able to bind a large number of different RNAs. The currently available knowledge is already drawing an intricate network of interactions, whose deregulation is frequently associated to pathological states. Several different techniques were developed in the past years to obtain protein-RNA binding data in a high-throughput fashion. In parallel, in silico inference methods were developed for the accurate computational prediction of the interaction of RBP-lncRNA pairs. The field is growing rapidly, and it is foreseeable that in the near future, the protein-lncRNA interaction network will rise, offering essential clues for a better understanding of lncRNA cellular mechanisms and their disease-associated perturbations.


Assuntos
RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Biologia Computacional/métodos , Simulação por Computador , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , Mapas de Interação de Proteínas/genética , RNA Longo não Codificante/química , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Técnica de Seleção de Aptâmeros/estatística & dados numéricos
10.
Nucleic Acids Res ; 44(18): 8600-8609, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27580722

RESUMO

Functional RNA regions are often related to recurrent secondary structure patterns (or motifs), which can exert their role in several different ways, particularly in dictating the interaction with RNA-binding proteins, and acting in the regulation of a large number of cellular processes. Among the available motif-finding tools, the majority focuses on sequence patterns, sometimes including secondary structure as additional constraints to improve their performance. Nonetheless, secondary structures motifs may be concurrent to their sequence counterparts or even encode a stronger functional signal. Current methods for searching structural motifs generally require long pipelines and/or high computational efforts or previously aligned sequences. Here, we present BEAM (BEAr Motif finder), a novel method for structural motif discovery from a set of unaligned RNAs, taking advantage of a recently developed encoding for RNA secondary structure named BEAR (Brand nEw Alphabet for RNAs) and of evolutionary substitution rates of secondary structure elements. Tested in a varied set of scenarios, from small- to large-scale, BEAM is successful in retrieving structural motifs even in highly noisy data sets, such as those that can arise in CLIP-Seq or other high-throughput experiments.


Assuntos
Biofísica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Conformação de Ácido Nucleico , RNA/química , Algoritmos , Animais , Bases de Dados de Ácidos Nucleicos , Proteína Semelhante a ELAV 1/metabolismo , Ferro/farmacologia , Camundongos , Motivos de Nucleotídeos/genética , Ligação Proteica/efeitos dos fármacos , Elementos de Resposta/genética , Análise de Sequência de RNA
11.
Nucleic Acids Res ; 44(D1): D38-47, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26538599

RESUMO

Life sciences are yielding huge data sets that underpin scientific discoveries fundamental to improvement in human health, agriculture and the environment. In support of these discoveries, a plethora of databases and tools are deployed, in technically complex and diverse implementations, across a spectrum of scientific disciplines. The corpus of documentation of these resources is fragmented across the Web, with much redundancy, and has lacked a common standard of information. The outcome is that scientists must often struggle to find, understand, compare and use the best resources for the task at hand.Here we present a community-driven curation effort, supported by ELIXIR-the European infrastructure for biological information-that aspires to a comprehensive and consistent registry of information about bioinformatics resources. The sustainable upkeep of this Tools and Data Services Registry is assured by a curation effort driven by and tailored to local needs, and shared amongst a network of engaged partners.As of November 2015, the registry includes 1785 resources, with depositions from 126 individual registrations including 52 institutional providers and 74 individuals. With community support, the registry can become a standard for dissemination of information about bioinformatics resources: we welcome everyone to join us in this common endeavour. The registry is freely available at https://bio.tools.


Assuntos
Biologia Computacional , Sistema de Registros , Curadoria de Dados , Software
12.
Trends Biochem Sci ; 38(1): 38-46, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23164942

RESUMO

The SPla/Ryanodine receptor (SPRY)/B30.2 domain is one of the most common folds in higher eukaryotes. The human genome encodes 103 SPRY/B30.2 domains, several of which are involved in the immune response. Approximately 45% of human SPRY/B30.2-containing proteins are E3 ligases. The role and function of the majority of SPRY/B30.2 domains are still poorly understood, however, in several cases mutations in this domain have been linked to congenital disorders. The recent characterization of SPRY/B30.2-mediated protein interactions has provided evidence for a role of this domain as an adaptor module to assemble macromolecular complexes, analogous to Src homology (SH)2, SH3, and WW domains. However, functional and structural evidence suggests that SPRY/B30.2 is a more versatile fold, allowing a wide range of binding modes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Substâncias Macromoleculares/metabolismo , Proteínas de Membrana/metabolismo , Conformação Proteica , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Proteínas de Transporte/química , Humanos , Substâncias Macromoleculares/química , Proteínas de Membrana/química , Estrutura Terciária de Proteína
13.
Nucleic Acids Res ; 43(W1): W493-7, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25977293

RESUMO

Web-Beagle (http://beagle.bio.uniroma2.it) is a web server for the pairwise global or local alignment of RNA secondary structures. The server exploits a new encoding for RNA secondary structure and a substitution matrix of RNA structural elements to perform RNA structural alignments. The web server allows the user to compute up to 10 000 alignments in a single run, taking as input sets of RNA sequences and structures or primary sequences alone. In the latter case, the server computes the secondary structure prediction for the RNAs on-the-fly using RNAfold (free energy minimization). The user can also compare a set of input RNAs to one of five pre-compiled RNA datasets including lncRNAs and 3' UTRs. All types of comparison produce in output the pairwise alignments along with structural similarity and statistical significance measures for each resulting alignment. A graphical color-coded representation of the alignments allows the user to easily identify structural similarities between RNAs. Web-Beagle can be used for finding structurally related regions in two or more RNAs, for the identification of homologous regions or for functional annotation. Benchmark tests show that Web-Beagle has lower computational complexity, running time and better performances than other available methods.


Assuntos
RNA/química , Software , Algoritmos , Internet , Conformação de Ácido Nucleico , Alinhamento de Sequência , Análise de Sequência de RNA
14.
J Cell Mol Med ; 20(1): 181-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26542080

RESUMO

The up-regulation of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), encoded by the OLR1 gene, plays a fundamental role in the pathogenesis of atherosclerosis. Moreover, OLR1 polymorphisms were associated with increased susceptibility to acute myocardial infarction (AMI) and coronary artery diseases (CAD). In these pathologies, the identification of therapeutic approaches that can inhibit or reduce LOX-1 overexpression is crucial. Predictive analysis showed a putative hsa-miR-24 binding site in the 3'UTR of OLR1, 'naturally' mutated by the presence of the rs1050286 single nucleotide polymorphism (SNP). Luciferase assays revealed that miR-24 targets OLR1 3'UTR-G, but not 3'UTR-A (P < 0.0005). The functional relevance of miR-24 in regulating the expression of OLR1 was established by overexpressing miR-24 in human cell lines heterozygous (A/G, HeLa) and homozygous (A/A, HepG2) for rs1050286 SNP. Accordingly, HeLa (A/G), but not HepG2 (A/A), showed a significant down-regulation of OLR1 both at RNA and protein level. Our results indicate that rs1050286 SNP significantly affects miR-24 binding affinity to the 3'UTR of OLR1, causing a more efficient post-transcriptional gene repression in the presence of the G allele. On this basis, we considered that OLR1 rs1050286 SNP may contribute to modify OLR1 susceptibility to AMI and CAD, so ORL1 SNPs screening could help to stratify patients risk.


Assuntos
MicroRNAs/genética , Interferência de RNA , Receptores Depuradores Classe E/genética , Regiões 3' não Traduzidas , Sequência de Bases , Sítios de Ligação , Doença da Artéria Coronariana/genética , Repressão Enzimática , Estudos de Associação Genética , Predisposição Genética para Doença , Células HeLa , Células Hep G2 , Humanos , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Polimorfismo de Nucleotídeo Único , Receptores Depuradores Classe E/metabolismo , Análise de Sequência de RNA
15.
Circ J ; 80(4): 938-49, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26960954

RESUMO

BACKGROUND: Familial hypertrophic cardiomyopathy (HCM) is an autosomal dominant inherited disorder; mutations in at least 20 genes have been associated. Brugada syndrome (BrS) is an autosomal dominant inherited disorder caused by mutations mainly in theSCN5Agene. A new clinical entity that consists of HCM, typical electrical instability of BrS and sudden death (SD), is described. METHODS AND RESULTS: The family was constituted by 7 members, 4 of who presented clinical features of HCM and electrical instability of BrS. The clinical presentation of proband was ventricular fibrillation. All members were clinically evaluated by physical examination, 12-lead electrocardiography, 2-dimensional echocardiography, stress test, electrocardiogram Holter, flecainide test, and electrophysiological study. An integrated linkage analysis and next generation sequencing (NGS) approach was used to identify the causative mutation. Linkage with the α-tropomyosin (TPM1) gene on chromosome 15q22 was identified. The NGS study identified a missense mutation within theTPM1gene (c.574G>A; p.E192K), exactly located in a binding domain with polycystin-2 protein. No other pathogenic mutations were identified. CONCLUSIONS: This is the first report of an association between HCM and BrS, and the first to use a combined approach of linkage and NGS to identify a causative mutation in SD. The present study expands the clinical spectrum of disorders associated with theTPM1gene and may be useful to report novel mechanisms of electrical instability in HCM and BrS.


Assuntos
Síndrome de Brugada/genética , Cardiomiopatia Hipertrófica Familiar/genética , Cromossomos Humanos Par 15/genética , Ligação Genética , Tropomiosina/genética , Adulto , Síndrome de Brugada/fisiopatologia , Cardiomiopatia Hipertrófica Familiar/fisiopatologia , Eletrocardiografia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Canal de Sódio Disparado por Voltagem NAV1.5/genética
16.
Acta Derm Venereol ; 96(7): 954-958, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27120332

RESUMO

Mutations in the laminin-332 (α3Aß3γ2) genes cause junctional epidermolysis bullosa (JEB), a recessively inherited disease characterized by blistering and altered wound repair. In addition, specific mutations that affect the N-terminus of the α3A chain cause a JEB-related non-blistering condition characterized by chronic production of granulation tissue, suggesting a critical role of this region in epithelial-mesenchymal communication. We report here a 9-year-old patient with JEB with a few long-standing skin ulcers with prominent granulation tissue in the absence of active blistering. He bears a homozygous missense mutation, p.Gly254Asp, within the first laminin epidermal growth factor-like (LE) repeat of the ß3 short arm. We show that p.Gly254Asp causes mis-folding of the LE motif, leading to reduced secretion of laminin-332 and structural alterations of the cutaneous basement membrane zone. These findings demonstrate, in a patient in vivo, that the ß3 short arm is also involved in the outcome of the granulation tissue response.


Assuntos
Moléculas de Adesão Celular/genética , Epidermólise Bolhosa Juncional/genética , Criança , Tecido de Granulação , Humanos , Masculino , Calinina
17.
Mol Cell Proteomics ; 13(9): 2198-212, 2014 09.
Artigo em Inglês | MEDLINE | ID: mdl-24830415

RESUMO

Phosphorylation is a widespread post-translational modification that modulates the function of a large number of proteins. Here we show that a significant proportion of all the domains in the human proteome is significantly enriched or depleted in phosphorylation events. A substantial improvement in phosphosites prediction is achieved by leveraging this observation, which has not been tapped by existing methods. Phosphorylation sites are often not shared between multiple occurrences of the same domain in the proteome, even when the phosphoacceptor residue is conserved. This is partly because of different functional constraints acting on the same domain in different protein contexts. Moreover, by augmenting domain alignments with structural information, we were able to provide direct evidence that phosphosites in protein-protein interfaces need not be positionally conserved, likely because they can modulate interactions simply by sitting in the same general surface area.


Assuntos
Fosforilação , Proteoma/metabolismo , Biologia Computacional/métodos , Humanos , Fosfoproteínas/metabolismo , Domínios Proteicos , Proteoma/química
18.
Mol Cell Proteomics ; 13(7): 1787-99, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24741111

RESUMO

Leishmania are obligatory intracellular parasitic protozoa that cause a wide range of diseases in humans, cycling between extracellular promastigotes in the mid-gut of sand flies and intracellular amastigotes in the phagolysosomes of mammalian macrophages. Although many of the molecular mechanisms of development inside macrophages remain a mystery, the development of a host-free system that simulates phagolysosome conditions (37 °C and pH 5.5) has provided new insights into these processes. The time course of promastigote-to-amastigote differentiation can be divided into four morphologically distinct phases: I, signal perception (0-5 h after exposure); II, movement cessation and aggregation (5-10 h); III, amastigote morphogenesis (10-24 h); and IV, maturation (24-120 h). Transcriptomic and proteomic analyses have indicated that differentiation is a coordinated process that results in adaptation to life inside phagolysosomes. Recent phosphoproteomic analysis revealed extensive differences in phosphorylation between promastigotes and amastigotes and identified stage-specific phosphorylation motifs. We hypothesized that the differentiation signal activates a phosphorylation pathway that initiates Leishmania transformation, and here we used isobaric tags for relative and absolute quantitation to interrogate the dynamics of changes in the phosphorylation profile during Leishmania donovani promastigote-to-amastigote differentiation. Analysis of 163 phosphopeptides (from 106 proteins) revealed six distinct kinetic profiles; with increases in phosphorylation predominated during phases I and III, whereas phases II and IV were characterized by greater dephosphorylation. Several proteins (including a protein kinase) were phosphorylated in phase I after exposure to the complete differentiation signal (i.e. signal-specific; 37 °C and pH 5.5), but not after either of the physical parameters separately. Several other protein kinases (including regulatory subunits) and phosphatases also showed changes in phosphorylation during differentiation. This work constitutes the first genome-scale interrogation of phosphorylation dynamics in a parasitic protozoa, revealing the outline of a signaling pathway during Leishmania differentiation. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (identifier PXD000671). Data can be viewed using ProteinPilot™ software.


Assuntos
Diferenciação Celular/fisiologia , Leishmania donovani/citologia , Leishmania donovani/metabolismo , Proteínas de Protozoários/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Fosforilação , Proteômica , Transdução de Sinais
19.
Nucleic Acids Res ; 42(10): 6146-57, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24753415

RESUMO

Structural information is crucial in ribonucleic acid (RNA) analysis and functional annotation; nevertheless, how to include such structural data is still a debated problem. Dot-bracket notation is the most common and simple representation for RNA secondary structures but its simplicity leads also to ambiguity requiring further processing steps to dissolve. Here we present BEAR (Brand nEw Alphabet for RNA), a new context-aware structural encoding represented by a string of characters. Each character in BEAR encodes for a specific secondary structure element (loop, stem, bulge and internal loop) with specific length. Furthermore, exploiting this informative and yet simple encoding in multiple alignments of related RNAs, we captured how much structural variation is tolerated in RNA families and convert it into transition rates among secondary structure elements. This allowed us to compute a substitution matrix for secondary structure elements called MBR (Matrix of BEAR-encoded RNA secondary structures), of which we tested the ability in aligning RNA secondary structures. We propose BEAR and the MBR as powerful resources for the RNA secondary structure analysis, comparison and classification, motif finding and phylogeny.


Assuntos
RNA/química , Algoritmos , Biologia Computacional/métodos , Conformação de Ácido Nucleico , Análise de Sequência de RNA
20.
PLoS Genet ; 9(7): e1003601, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874213

RESUMO

Fragile X syndrome (FXS), the leading cause of inherited intellectual disability, is caused by epigenetic silencing of the FMR1 gene, through expansion and methylation of a CGG triplet repeat (methylated full mutation). An antisense transcript (FMR1-AS1), starting from both promoter and intron 2 of the FMR1 gene, was demonstrated in transcriptionally active alleles, but not in silent FXS alleles. Moreover, a DNA methylation boundary, which is lost in FXS, was recently identified upstream of the FMR1 gene. Several nuclear proteins bind to this region, like the insulator protein CTCF. Here we demonstrate for the first time that rare unmethylated full mutation (UFM) alleles present the same boundary described in wild type (WT) alleles and that CTCF binds to this region, as well as to the FMR1 gene promoter, exon 1 and intron 2 binding sites. Contrariwise, DNA methylation prevents CTCF binding to FXS alleles. Drug-induced CpGs demethylation does not restore this binding. CTCF knock-down experiments clearly established that CTCF does not act as insulator at the active FMR1 locus, despite the presence of a CGG expansion. CTCF depletion induces heterochromatinic histone configuration of the FMR1 locus and results in reduction of FMR1 transcription, which however is not accompanied by spreading of DNA methylation towards the FMR1 promoter. CTCF depletion is also associated with FMR1-AS1 mRNA reduction. Antisense RNA, like sense transcript, is upregulated in UFM and absent in FXS cells and its splicing is correlated to that of the FMR1-mRNA. We conclude that CTCF has a complex role in regulating FMR1 expression, probably through the organization of chromatin loops between sense/antisense transcriptional regulatory regions, as suggested by bioinformatics analysis.


Assuntos
Metilação de DNA , Proteínas de Drosophila/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Proteínas Repressoras/genética , Sítios de Ligação , Fator de Ligação a CCCTC , Linhagem Celular Tumoral , Ilhas de CpG/genética , Proteínas de Ligação a DNA , Proteínas de Drosophila/metabolismo , Epigênese Genética , Éxons/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Regulação da Expressão Gênica , Humanos , Íntrons/genética , Mutação , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Proteínas Repressoras/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA