Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Foods ; 12(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37893629

RESUMO

Okara is a by-product from the production of soy beverages, which has a high content of protein and fiber. Even though it has a high nutritional value, it is generally discarded or used as animal feed or compost. The problem is its short shelf life due to its high water content and high water activity. The aim of this study was to investigate the effect of high-pressure pasteurization at 200 MPa, 400 MPa, and 600 MPa on the shelf life of soy okara. Microbiological growth, as well as thermal properties, viscosity, water holding capacity, and oil holding capacity, was evaluated after the pressure treatments. Treatment at 600 MPa significantly reduced (p < 0.05) the growth of total aerobic count, yeast and mold, and lactic acid bacteria for up to four weeks of storage at 4 °C. The pasting properties were increased while the water and oil holding capacities of the soy okara did not significantly change (p > 0.05) after high-pressure pasteurization at 400 MPa and 600 MPa. High-pressure pasteurization is therefore a potential application technique for soy okara to produce a microbiologically safe product with maintained functional properties. However, more research is needed to optimize the process and to further investigate the microbiological species present in untreated soy okara to exclude any potential food safety risks.

2.
Foods ; 12(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38002127

RESUMO

The issue of the short microbiological shelf life of residues from the plant-based beverage industry creates a large food waste problem. Today, the oat beverage residue, in this study referred to as oat okara, is generally converted to energy or used as animal feed. High-pressure pasteurization (200 MPa, 400 MPa, and 600 MPa) was applied to oat okara to investigate the effect on shelf life and microbiological activity. A 4-week microbiological storage study was performed and thermal properties, viscosity, and water and oil holding capacities were analyzed. The total aerobic count, including yeast and mold, was significantly reduced (p < 0.05) by 600 MPa after four weeks of storage at 4 °C. The content of lactic acid bacteria after four weeks of storage was low for untreated oat okara (3.2 log CFU/g) but, for 600 MPa, the content remained at the detection limit (2.3 log CFU/g). Conversely, the treatments of 200 MPa and 400 MPa increased the microbial content of the total aerobic count significantly (p < 0.05) after two weeks in comparison to untreated oat okara. The thermal properties of untreated and high-pressure-treated oat okara demonstrated an increase in protein denaturation of the 12S globulin, avenalin, when higher pressure was applied (400-600 MPa). This was also confirmed in the viscosity measurements where a viscosity peak for avenalin was only present for untreated and 200 MPa treated oat okara. The water holding capacity did not change as a function of high-pressure treatment (3.5-3.8 mL/g) except for the treatment at 200 MPa, which was reduced (2.7 mL/g). The oil holding capacity was constant (1.2-1.3 mL/g) after all treatments. High-pressure pasteurization of 600 MPa reduced the microbial content in oat okara resulting in a shelf life of 2-4 weeks. However, more research is required to identify the microorganisms in oat okara to achieve a microbiologically safe product that can be used for food applications.

3.
J Food Sci ; 87(1): 312-325, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34953090

RESUMO

During the production of industrial hempseed oil, a press cake is formed as a byproduct, which is often used as animal feed although it contains a high amount of protein that could be used for human consumption. Extracting this valuable protein would reduce food waste and increase the availability of plant-based protein. A protein extraction process based on the pH-shift method was adapted to improve the protein extraction yield from industrial hempseed press cake (HPC). Parameters such as alkali extraction pH, time, and temperature, as well as isoelectric precipitation pH, were investigated in laboratory scale and were thereafter carried out in a pilot trial to explore the suitability for future scale up. The phytic acid content of the extracted protein isolate was also analyzed to investigate any potential inhibitory effect on mineral absorption. A final protein yield of 60.6%, with a precipitated protein content of 90.3% (dw), was obtained using a constant alkali extraction pH of 10.5 for 1 h at room temperature, followed by precipitation at pH 5.5. The pilot trial showed promising results for the future production of industrial hemp protein precipitate on a larger scale, showing a protein yield of 57.0% and protein content of 90.8% (dw). The amount of phytic acid in the protein isolate produced in the optimal laboratory experiment and in the pilot trial was 0.595 and 0.557 g phytic acid/100 g dw, respectively, which is 83%-88% less than in the HPC. This is in the range of other plant-based protein sources (tofu, kidney beans, peas, etc.). PRACTICAL APPLICATION: Industrial hempseed press cake is a byproduct in the production of industrial hempseed oil, which is mostly used as animal feed, but has the potential to become an additional source of plant-based protein for human consumption with a suitable protein extraction method. The extracted hemp protein could be used to develop new plant-based dairy or meat analog products.


Assuntos
Cannabis , Eliminação de Resíduos , Ração Animal/análise , Animais , Humanos , Laboratórios , Extratos Vegetais
4.
Foods ; 10(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34681446

RESUMO

Rapeseed protein is not currently utilized for food applications, although it has excellent physicochemical, functional, and nutritional properties similar to soy protein. Thus, the goal of this study was to create new plant-based extrudates for application as high-moisture meat analogs from a 50:50 blend of rapeseed protein concentrate (RPC) and yellow pea isolate (YPI) using high-moisture-extrusion (HME) cooking with a twin-screw extruder to gain a better understanding of the properties of the protein powders and resulting extrudates. The effects of extrusion processing parameters such as moisture content (60%, 63%, 65%, 70%), screw speed (500, 700, and 900 rpm), and a barrel temperature profile of 40-80-130-150 °C on the extrudates' characteristics were studied. When compared to the effect of varying screw speeds, targeted moisture content had a larger impact on textural characteristics. The extrudates had a greater hardness at the same moisture content when the screw speed was reduced. The specific mechanical energy (SME) increased as the screw speed increased, while increased moisture content resulted in a small reduction in SME. The lightness (L*) of most samples was found to increase as the target moisture content increased from 60% to 70%. The RPC:YPI blend was equivalent to proteins produced from other sources and comparable to the FAO/WHO standard requirements.

5.
Foods ; 9(6)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545255

RESUMO

The interest in plant-based products is growing in Western countries, mostly due to health and environmental issues that arise from the consumption and production of animal-based food products. Many vegan products today are made from soy, but drawbacks include the challenges of cultivating soy in colder climates such as northern Europe. Therefore, the present study investigates whether industrial hemp (Cannabis sativa) could substitute soy in the production of high moisture meat analogues (HMMA). A twin screw co-rotating extruder was used to investigate to what extent hemp protein concentrate (HPC) could replace soy protein isolate (SPI) in HMMAs. The substitution levels of HPC were 20 wt%, 40 wt% and 60 wt%. Pasting properties and melting temperature of the protein powders were characterized by Rapid Visco Analyzer (RVA) and Differential Scanning Calorimeter (DSC), respectively and the produced HMMA was analysed by determining the texture and colour attributes. The results showed that it is possible to extrude a mixture with up to 60% HPC. HPC absorbed less water and needed a higher denaturing temperature compared to SPI. Increasing the moisture content by 5% would have resulted in a reduction of hardness and chewiness. The lightness (L* value) was found to be significantly higher in SPI product and decreased in the mixture with higher HPC (p < 0.05).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA