RESUMO
Aminoglycosides are potent antibiotics that are commonly prescribed worldwide. Their use carries significant risks of ototoxicity by directly causing inner ear hair cell degeneration. Despite their ototoxic side effects, there are currently no approved antidotes. Here we review recent advances in our understanding of aminoglycoside ototoxicity, mechanisms of drug transport, and promising sites for intervention to prevent ototoxicity.
Assuntos
Aminoglicosídeos , Ototoxicidade , Aminoglicosídeos/toxicidade , Antibacterianos/efeitos adversos , HumanosRESUMO
Introduction: Cochlear afferent synapses connecting inner hair cells to spiral ganglion neurons are susceptible to excitotoxic trauma on exposure to loud sound, resulting in a noise-induced cochlear synaptopathy (NICS). Here we assessed the ability of cyclic AMP-dependent protein kinase (PKA) signaling to promote cochlear synapse regeneration, inferred from its ability to promote axon regeneration in axotomized CNS neurons, another system refractory to regeneration. Methods: We mimicked NICS in vitro by applying a glutamate receptor agonist, kainic acid (KA) to organotypic cochlear explant cultures and experimentally manipulated cAMP signaling to determine whether PKA could promote synapse regeneration. We then delivered the cAMP phosphodiesterase inhibitor rolipram via implanted subcutaneous minipumps in noise-exposed CBA/CaJ mice to test the hypothesis that cAMP signaling could promote cochlear synapse regeneration in vivo. Results: We showed that the application of the cell membrane-permeable cAMP agonist 8-cpt-cAMP or the cAMP phosphodiesterase inhibitor rolipram promotes significant regeneration of synapses in vitro within twelve hours after their destruction by KA. This is independent of neurotrophin-3, which also promotes synapse regeneration. Moreover, of the two independent signaling effectors activated by cAMP - the cAMP Exchange Protein Activated by cAMP and the cAMP-dependent protein kinase - it is the latter that mediates synapse regeneration. Finally, we showed that systemic delivery of rolipram promotes synapse regeneration in vivo following NICS. Discussion: In vitro experiments show that cAMP signaling promotes synapse regeneration after excitotoxic destruction of cochlear synapses and does so via PKA signaling. The cAMP phosphodiesterase inhibitor rolipram promotes synapse regeneration in vivo in noise-exposed mice. Systemic administration of rolipram or similar compounds appears to provide a minimally invasive therapeutic approach to reversing synaptopathy post-noise.
RESUMO
OBJECTIVE: Current treatment options for lupus are far from optimal. Previously, we reported that phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin, MEK-1/ERK-1,2, p38, STAT-3, STAT-5, NF-κB, multiple Bcl-2 family members, and various cell cycle molecules were overexpressed in splenic B cells in an age-dependent and gene dose-dependent manner in mouse strains with spontaneous lupus. Since the synthetic triterpenoid methyl-2-cyano-3,12-dioxooleana-1,9-dien-28-oate (CDDO-Me) has been shown to inhibit AKT, MEK-1/2, and NF-κB, and to induce caspase-mediated apoptosis, we tested the therapeutic potential of this agent in murine lupus nephritis. METHODS: The synthetic triterpenoid CDDO-Me or placebo was administered to 2-month-old B6.Sle1.Sle3 mice or MRL/lpr mice, which develop spontaneous lupus. All mice were phenotyped for disease. RESULTS: CDDO-Me-treated mice exhibited significantly reduced splenic cellularity, with decreased numbers of both CD4+ T cells and activated CD69+/CD4+ T cells compared to the placebo-treated mice. These mice also exhibited a significant reduction in serum autoantibody levels, including anti-double-stranded DNA (anti-dsDNA) and antiglomerular antibodies. Finally, CDDO-Me treatment attenuated renal disease in mice, as indicated by reduced 24-hour proteinuria, blood urea nitrogen, and glomerulonephritis. At the mechanistic level, CDDO-Me treatment dampened MEK-1/2, ERK, and STAT-3 signaling within lymphocytes and oxidative stress. Importantly, the NF-E2-related factor 2 pathway was activated after CDDO-Me treatment, indicating that CDDO-Me may modulate renal damage in lupus via the inhibition of oxidative stress. CONCLUSION: These findings underscore the importance of AKT/MEK-1/2/NF-κB signaling in engendering murine lupus. Our findings indicate that the blockade of multiple signaling nodes and oxidative stress may effectively prevent and reverse the hematologic, autoimmune, and pathologic manifestations of lupus.