Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Oecologia ; 167(2): 573-85, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21590331

RESUMO

Motivated by persistent predictions of warming and drying in the entire Mediterranean and other regions, we have examined the interactions of intrinsic water-use efficiency (W(i)) with environmental conditions in Pinus halepensis. We used 30-year (1974-2003) tree-ring records of basal area increment (BAI) and cellulose (13)C and (18)O composition, complemented by short-term physiological measurements, from three sites across a precipitation (P) gradient (280-700 mm) in Israel. The results show a clear trend of increasing W(i) in both the earlywood (EW) and latewood (LW) that varied in magnitude depending on site and season, with the increase ranging from ca. 5 to 20% over the study period. These W(i) trends were better correlated with the increase in atmospheric CO(2) concentration, C(a), than with the local increase in temperature (~0.04°C year(-1)), whereas age, height and density variations had minor effects on the long-term isotope record. There were no trends in P over time, but W(i) from EW and BAI were dependent on the interannual variations in P. From reconstructed C(i) values, we demonstrate that contrasting gas-exchange responses at opposing ends of the hydrologic gradient underlie the variation in W(i) sensitivity to C(a) between sites and seasons. Under the mild water limitations typical of the main seasonal growth period, regulation was directed at increasing C(i)/C(a) towards a homeostatic set-point observed at the most mesic site, with a decrease in the W(i) response to C(i) with increasing aridity. With more extreme drought stress, as seen in the late season at the drier sites, the response was W(i) driven, and there was an increase in the W(i) sensitivity to C(a) with aridity and a decreasing sensitivity of C(i) to C(a). The apparent C(a)-driven increases in W(i) can help to identify the adjustments to drying conditions that forest ecosystems can make in the face of predicted atmospheric change.


Assuntos
Pinus/fisiologia , Chuva , Adaptação Fisiológica , Dióxido de Carbono/análise , Isótopos de Carbono/análise , Clima , Secas , Ecossistema , Israel , Pinus/crescimento & desenvolvimento , Estações do Ano , Equilíbrio Hidroeletrolítico
2.
Plant Cell Environ ; 33(6): 900-13, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20082670

RESUMO

While there is currently intense effort to examine the (13)C signal of CO(2) evolved in the dark, less is known on the isotope composition of day-respired CO(2). This lack of knowledge stems from technical difficulties to measure the pure respiratory isotopic signal: day respiration is mixed up with photorespiration, and there is no obvious way to separate photosynthetic fractionation (pure c(i)/c(a) effect) from respiratory effect (production of CO(2) with a different delta(13)C value from that of net-fixed CO(2)) at the ecosystem level. Here, we took advantage of new simple equations, and applied them to sunflower canopies grown under low and high [CO(2)]. We show that whole mesocosm-respired CO(2) is slightly (13)C depleted in the light at the mesocosm level (by 0.2-0.8 per thousand), while it is slightly (13)C enriched in darkness (by 1.5-3.2 per thousand). The turnover of the respiratory carbon pool after labelling appears similar in the light and in the dark, and accordingly, a hierarchical clustering analysis shows a close correlation between the (13)C abundance in day- and night-evolved CO(2). We conclude that the carbon source for respiration is similar in the dark and in the light, but the metabolic pathways associated with CO(2) production may change, thereby explaining the different (12)C/(13)C respiratory fractionations in the light and in the dark.


Assuntos
Ritmo Circadiano/fisiologia , Helianthus/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Respiração Celular , Análise por Conglomerados , Escuridão , Marcação por Isótopo , Luz , Especificidade de Órgãos , Fotossíntese , Fatores de Tempo
4.
Philos Trans A Math Phys Eng Sci ; 368(1931): 5117-35, 2010 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-20956364

RESUMO

The projection of robust regional climate changes over the next 50 years presents a considerable challenge for the current generation of climate models. Water cycle changes are particularly difficult to model in this area because major uncertainties exist in the representation of processes such as large-scale and convective rainfall and their feedback with surface conditions. We present climate model projections and uncertainties in water availability indicators (precipitation, run-off and drought index) for the 1961-1990 and 2021-2050 periods. Ensembles from two global climate models (GCMs) and one regional climate model (RCM) are used to examine different elements of uncertainty. Although all three ensembles capture the general distribution of observed annual precipitation across the Middle East, the RCM is consistently wetter than observations, especially over the mountainous areas. All future projections show decreasing precipitation (ensemble median between -5 and -25%) in coastal Turkey and parts of Lebanon, Syria and Israel and consistent run-off and drought index changes. The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) GCM ensemble exhibits drying across the north of the region, whereas the Met Office Hadley Centre work Quantifying Uncertainties in Model ProjectionsAtmospheric (QUMP-A) GCM and RCM ensembles show slight drying in the north and significant wetting in the south. RCM projections also show greater sensitivity (both wetter and drier) and a wider uncertainty range than QUMP-A. The nature of these uncertainties suggests that both large-scale circulation patterns, which influence region-wide drying/wetting patterns, and regional-scale processes, which affect localized water availability, are important sources of uncertainty in these projections. To reduce large uncertainties in water availability projections, it is suggested that efforts would be well placed to focus on the understanding and modelling of both large-scale processes and their teleconnections with Middle East climate and localized processes involved in orographic precipitation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA