Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Lancet Oncol ; 23(12): 1547-1557, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36343656

RESUMO

BACKGROUND: The standard preoperative radiotherapy regimen of 50 Gy delivered in 25 fractions for 5 weeks for soft tissue sarcomas results in excellent local control, with major wound complications occurring in approximately 35% of patients. We aimed to investigate the safety of a moderately hypofractionated, shorter regimen of radiotherapy, which could be more convenient for patients. METHODS: This single-centre, open-label, single-arm, phase 2 trial (HYPORT-STS) was done at a single tertiary cancer care centre (MD Anderson Cancer Center, Houston, TX, USA). We administered preoperative radiotherapy to a dose of 42·75 Gy in 15 fractions of 2·85 Gy/day for 3 weeks (five fractions per week) to adults (aged ≥18 years) with non-metastatic soft tissue sarcomas of the extremities or superficial trunk and an Eastern Cooperative Oncology Group performance status of 0-3. The primary endpoint was a major wound complication occurring within 120 days of surgery. Major wound complications were defined as those requiring a secondary operation, or operations, under general or regional anaesthesia for wound treatment; readmission to the hospital for wound care; invasive procedures for wound care; deep wound packing to an area of wound measuring at least 2 cm in length; prolonged dressing changes; repeat surgery for revision of a split thickness skin graft; or wet dressings for longer than 4 weeks. We analysed our primary outcome and safety in all patients who enrolled. We monitored safety using a Bayesian, one-arm, time-to-event stopping rule simulator comparing the rate of major wound complications at 120 days post-surgery among study participants with the historical rate of 35%. This trial is registered with ClinicalTrials.gov, NCT03819985, recruitment is complete, and follow-up continues. FINDINGS: Between Dec 18, 2018, and Jan 6, 2021, we assessed 157 patients for eligibility, of whom 120 were enrolled and received hypofractionated preoperative radiotherapy. At no time did the stopping rule computation indicate that the trial should be stopped early for lack of safety. Median postoperative follow-up was 24 months (IQR 17-30). Of 120 patients, 37 (31%, 95% CI 24-40) developed a major wound complication at a median time of 37 days (IQR 25-59) after surgery. No patient had acute radiation toxicity (during radiotherapy or within 4 weeks of the radiotherapy end date) of grade 3 or worse (Common Terminology Criteria for Adverse Events [CTCAE] version 4.0) or an on-treatment serious adverse event. Four (3%) of 115 patients had late radiation toxicity (≥6 months post-surgery) of at least grade 3 (CTCAE or Radiation Therapy Oncology Group/European Organisation for Research and Treatment of Cancer Late Radiation Morbidity Scoring Scheme): femur fractures (n=2), lymphoedema (n=1), and skin ulceration (n=1). There were no treatment-related deaths. INTERPRETATION: Moderately hypofractionated preoperative radiotherapy delivered to patients with soft tissue sarcomas was safe and could therefore be a more convenient alternative to conventionally fractionated radiotherapy. Patients can be counselled about these results and potentially offered this regimen, particularly if it facilitates care at a sarcoma specialty centre. Results on long-term oncological, late toxicity, and functional outcomes are awaited. FUNDING: The National Cancer Institute.


Assuntos
Lesões por Radiação , Sarcoma , Neoplasias de Tecidos Moles , Adulto , Humanos , Adolescente , Teorema de Bayes , Resultado do Tratamento , Neoplasias de Tecidos Moles/radioterapia , Neoplasias de Tecidos Moles/cirurgia , Sarcoma/radioterapia , Sarcoma/cirurgia , Hipofracionamento da Dose de Radiação
2.
Mol Pharmacol ; 93(4): 387-401, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29436493

RESUMO

Ligand binding and pathway-specific activation of G protein-coupled receptors is currently being studied with great effort. Individual answers may depend on the nature of the ligands and the effector pathway. Recently, we have presented a detailed model of neuropeptide Y bound to the Y2R. Accordingly, the C-terminal part of the peptide binds deeply in the transmembrane bundle and brings the side chain of the most essential Y36 in close proximity to W6.48 Here, we investigate the role of this interaction for ligand binding and activation of this receptor. BRET sensors were used for detailed investigation of effector coupling and led to the identification of preassembly of the Y2R-Gi complex. It further confirmed ligand-dependent recruitment of arrestin3. Using equally sensitive readouts for Gi activation and arrestin recruitment as well as quantification with operational models of agonism allowed us to identify a strong inherent bias for Gi activation over arrestin3 recruitment for the wild-type receptor. By systematic mutagenesis, we found that W6.48 does not contribute to the binding affinity, but acts as an allosteric connector to couple ligand binding to Gi activation and arrestin3 recruitment. However, even mutagenesis to a small threonine did not lead to a complete loss of signaling. Interestingly, signaling was restored to wild-type levels by ligands that contain a naphthylalanine as the C-terminal residue instead of Y36 Steric and polar contributions of W6.48 for the activation of the receptor are discussed in the context of different mechanisms of G protein coupling and arrestin recruitment.


Assuntos
Mutação/genética , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Receptores de Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/fisiologia , Relação Dose-Resposta a Droga , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Neuropeptídeo Y/química , Estrutura Secundária de Proteína , Receptores de Neuropeptídeo Y/química
3.
Ann N Y Acad Sci ; 1515(1): 129-142, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35650657

RESUMO

Although functional and structural models for paracellular channels formed by claudins have been reported, mechanisms regulating charge and size selectivity of these channels are unknown in detail. Here, claudin-15 and claudin-10b cation channels showing high-sequence similarity but differing channel properties were analyzed. Mutants of pore-lining residues were expressed in MDCK-C7 cells. In claudin-15, proposed ion interaction sites (D55 and E64) conserved between both claudins were neutralized. D55N and E64Q substitutions decreased ion permeabilities, and D55N/E64Q had partly additive effects. D55N increased cation dehydration capability and decreased pore diameter. Additionally, residues differing between claudin-15 and -10b close to pore center were analyzed. Claudin-10b-mimicking W63K affected neither assembly nor function of claudin-15 channels. In contrast, in claudin-10b, corresponding (claudin-15b-mimicking) K64W and K64M substitutions disturbed integration into tight junction and slightly altered relative permeabilities for differently sized monovalent cations. Removal of claudin-10b-specific negative charge (D36A substitution) was without effect. The data suggest that a common tetra-aspartate ring (D55/D56) in pore center of claudin-15/-10b channels directly attracts cations, while E64/D65 may be at least partly shielded by W63/K64. Charge at position W63/K64 affects assembly and properties for claudin-10b but not for claudin-15 channels. Our findings add to the mechanistic understanding of the determinants of paracellular cation permeability.


Assuntos
Ácido Aspártico , Junções Íntimas , Cátions Monovalentes , Claudina-4 , Claudinas/química , Claudinas/genética , Humanos
4.
Acta Physiol (Oxf) ; 228(1): e13334, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31188544

RESUMO

AIM: Claudin-15 is mainly expressed in the small intestine and indirectly involved in glucose absorption. Similar to claudin-2 and -10b, claudin-15 is known to form a paracellular channel for small cations. Claudin-2, but not claudin-10b, also forms water channels. Here we experimentally tested whether claudin-15 also mediates water transport and if yes, whether water transport is Na+ -coupled, as seen for claudin-2. METHODS: MDCK C7 cells were stably transfected with claudin-15. Ion and water permeability were investigated in confluent monolayers of control and claudin-15-expressing cells. Water flux was induced by an osmotic or ionic gradient. RESULTS: Expression of claudin-15 in MDCK cells strongly increased cation permeability. The permeability ratios for monovalent cations indicated a passage of partially hydrated ions through the claudin-15 pore. Accordingly, its pore diameter was determined to be larger than that of claudin-2 and claudin-10b. Mannitol-induced water flux was elevated in claudin-15-expressing cells compared to control cells. In contrast to the Na+ -coupled water flux of claudin-2 channels, claudin-15-mediated water flux was inhibited by Na+ flux. Consequently, water flux was increased in Na+ -free solution. Likewise, Na+ flux was decreased after induction of water flux through claudin-15. CONCLUSION: Claudin-15, similar to claudin-2, forms a paracellular cation and water channel. In functional contrast to claudin-2, water and Na+ fluxes through claudin-15 inhibit each other. Claudin-15 allows Na+ to retain part of its hydration shell within the pore. This then reduces the simultaneous passage of additional water through the pore.


Assuntos
Claudina-2/metabolismo , Claudinas/metabolismo , Junções Íntimas/fisiologia , Água/metabolismo , Animais , Aquaporinas/genética , Aquaporinas/metabolismo , Claudina-2/genética , Cães , Regulação da Expressão Gênica , Células Madin Darby de Rim Canino , Sódio , Proteínas de Junções Íntimas
5.
Ann N Y Acad Sci ; 1397(1): 143-156, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28415153

RESUMO

Claudins (Cldn) form the backbone of tight junction (TJ) strands and thereby regulate paracellular permeability for solutes and water. Polymeric strands are formed by homo- and heterophilic cis- and trans-interactions between claudin protomers. Crystal structures of some claudins have been resolved; however, the mechanism by which claudins assemble into TJ strands remains unclear. To elucidate strand architecture, TJ-like strands were reconstituted in HEK293 cells by claudin transfection. Determinants of prototypic, classic barrier-forming claudins (Cldn1, -3, and -5) involved in strand formation were analyzed by mutagenesis. The capability of claudin constructs to interact in trans and to form strands was investigated by cell contact-enrichment assays and freeze-fracture electron microscopy. Residues in extracellular loops 1 and 2 of the claudins affecting strand formation were identified. Using homology modeling and molecular docking, we tested working concepts for the arrangement of claudin protomers within TJ strands. We show that the charge of Lys65 in Cldn1 and Glu158 in Cldn3, but not of Arg30 or Asp145 in Cldn3, and the polarity of Gln56 and Gln62 in Cldn3 and of Gln57 in Cldn5 are necessary for TJ strand formation. These residues are all conserved among barrier-forming classic claudins. The results contribute to mechanistic understanding of claudin-based regulation of paracellular permeability.


Assuntos
Claudina-1/metabolismo , Claudina-3/metabolismo , Claudina-5/metabolismo , Junções Íntimas/metabolismo , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Sítios de Ligação/genética , Claudina-1/química , Claudina-1/genética , Claudina-3/química , Claudina-3/genética , Claudina-5/química , Claudina-5/genética , Cães , Técnica de Fratura por Congelamento/métodos , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Microscopia Confocal , Microscopia Eletrônica/métodos , Simulação de Acoplamento Molecular , Mutação , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos , Junções Íntimas/ultraestrutura
6.
Ann N Y Acad Sci ; 1405(1): 102-115, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28633196

RESUMO

Claudins are integral components of tight junctions (TJs) in epithelia and endothelia. When expressed in cell lines devoid of TJs, claudins are able to form TJ-like strands at contacts between adjacent cells. According to a current model of TJ strand formation, claudin protomers assemble in an antiparallel double row within the plasma membrane of each cell (cis-interaction) while binding to corresponding double rows from the neighboring cells (trans-interaction). Cis-interaction was proposed to involve two interfaces of the protomers' first extracellular segment (extracellular loop (ECL)1). In the current study, three naturally occurring claudin-10 isoforms and two claudin-10 chimeras were used to investigate strand formation. All constructs were able to interact in cis (Förster/fluorescence resonance energy transfer (FRET)), to integrate into TJs of MDCK-C7 cells (confocal laser scanning microscopy), and to form TJ-like strands in HEK293 cells (freeze-fracture electron microscopy). Strand formation occurred despite the fact that isoform claudin-10a_i1 lacks both structural ECL1 elements reported to be crucial for cis-interaction. Furthermore, results from FRET experiments on claudin-10 chimeras indicated that identity of the first transmembrane region rather than ECL1 is decisive for claudin-10 cis-interaction. Therefore, in addition to the interaction interfaces suggested in the current model for TJ strand assembly, alternative interfaces must exist.


Assuntos
Membrana Celular/metabolismo , Claudinas/metabolismo , Isoformas de Proteínas/metabolismo , Junções Íntimas/metabolismo , Quimera , Transferência Ressonante de Energia de Fluorescência , Técnica de Fratura por Congelamento , Células HEK293 , Humanos , Microscopia Eletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA