Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cytokine ; 172: 156414, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37918052

RESUMO

IL-33 is an alarmin produced by stromal cells and is known to promote airway inflammation. IL-33 is a critical mediator of steroid-unresponsiveness in severe asthma. We have previously shown that IFNγ, a cytokine known to be elevated in airway inflammation and severe asthma, enhances the abundance of IL-33 in bronchial epithelial cells. Previous studies have shown that environmental insults such as particulate matter results in activation of the aryl hydrocarbon receptor (AhR) and IL-33 production. However, the role of AhR in cytokine-mediated IL-33 production is unknown. In this study, we demonstrate that the knockdown of AhR results in significant decrease in IFNγ-mediated IL-33 production and phosphorylation of STAT1 (Y701), in human bronchial epithelial cells. The findings of this report suggest that AhR may be an essential component in IFNγ-mediated IL-33 production in the lungs.


Assuntos
Asma , Receptores de Hidrocarboneto Arílico , Humanos , Receptores de Hidrocarboneto Arílico/genética , Interleucina-33 , Citocinas , Células Epiteliais , Interferon gama , Inflamação
2.
Environ Res ; 209: 112803, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35120890

RESUMO

BACKGROUND: Traffic-related air pollution (TRAP) is a critical risk factor and major contributor to respiratory and cardiovascular disease (CVD). The effects of TRAP beyond the lungs can be related to changes in circulatory proteins. However, such TRAP-mediated changes have not been defined in an unbiased manner using a controlled human model. OBJECTIVE: To detail global protein changes (the proteome) in plasma following exposure to inhaled diesel exhaust (DE), a paradigm of TRAP, using controlled human exposures. METHODS: In one protocol, ex-smokers and never-smokers were exposed to filtered air (FA) and DE (300 µg PM2.5/m3), on order-randomized days, for 2 h. In a second protocol, independent never-smoking participants were exposed to lower concentrations of DE (20, 50 or 150 µg PM2.5/m3) and FA, for 4 h, on order-randomized days. Each exposure was separated by 4 weeks of washout. Plasma samples obtained 24 h post-exposure from ex-smokers (n = 6) were first probed using Slow off-rate modified aptamer proteomic array. Plasma from never-smokers (n = 11) was used for independent assessment of proteins selected from the proteomics study by immunoblotting. RESULTS: Proteomics analyses revealed that DE significantly altered 342 proteins in plasma of ex-smokers (n = 6). The top 20 proteins therein were primarily associated with inflammation and CVD. Plasma from never-smokers (n = 11) was used for independent assessment of 6 proteins, amongst the top 10 proteins increased by DE in the proteomics study, for immunoblotting. The abundance of all six proteins (fractalkine, apolipoproteins (APOB and APOM), IL18R1, MIP-3 and MMP-12) was significantly increased by DE in plasma of these never-smokers. DE-mediated increase was shown to be concentration-dependent for fractalkine, APOB and MMP-12, all biomarkers of atherosclerosis, which correlated with plasma levels of IL-6, a subclinical marker of CVD, in independent participants. CONCLUSION: This investigation details changes in the human plasma proteome due to TRAP. We identify specific atherosclerosis-related proteins that increase concentration-dependently across a range of TRAP levels applicable worldwide.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aterosclerose , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Aterosclerose/induzido quimicamente , Aterosclerose/etiologia , Aterosclerose/metabolismo , Humanos , Proteoma , Proteômica , Distribuição Aleatória , Emissões de Veículos/análise , Emissões de Veículos/toxicidade
3.
J Pineal Res ; 69(3): e12676, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32597503

RESUMO

Melatonin is a chronobiotic hormone, which can regulate human diseases like cancer, atherosclerosis, respiratory disorders, and microbial infections by regulating redox system. Melatonin exhibits innate immunomodulation by communicating with immune system and influencing neutrophils to fight infections and inflammation. However, sustaining redox homeostasis and reactive oxygen species (ROS) generation in neutrophils are critical during chemotaxis, oxidative burst, phagocytosis, and neutrophil extracellular trap (NET) formation. Therefore, endogenous antioxidant glutathione (GSH) redox cycle is highly vital in regulating neutrophil functions. Reduced intracellular GSH levels and glutathione reductase (GR) activity in the neutrophils during clinical conditions like autoimmune disorders, neurological disorders, diabetes, and microbial infections lead to dysfunctional neutrophils. Therefore, we hypothesized that redox modulators like melatonin can protect neutrophil health and functions under GSH and GR activity-deficient conditions. We demonstrate the dual role of melatonin, wherein it protects neutrophils from oxidative stress-induced apoptosis by reducing ROS generation; in contrast, it restores neutrophil functions like phagocytosis, degranulation, and NETosis in GSH and GR activity-deficient neutrophils by regulating ROS levels both in vitro and in vivo. Melatonin mitigates LPS-induced neutrophil dysfunctions by rejuvenating GSH redox system, specifically GR activity by acting as a parallel redox system. Our results indicate that melatonin could be a potential auxiliary therapy to treat immune dysfunction and microbial infections, including virus, under chronic disease conditions by restoring neutrophil functions. Further, melatonin could be a promising immune system booster to fight unprecedented pandemics like the current COVID-19. However, further studies are indispensable to address the clinical usage of melatonin.


Assuntos
Antioxidantes/uso terapêutico , Glutationa/metabolismo , Melatonina/uso terapêutico , Neutrófilos/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Feminino , Glutationa Redutase/metabolismo , Humanos , Masculino , Melatonina/farmacologia , Camundongos , Mitocôndrias/metabolismo , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Tratamento Farmacológico da COVID-19
4.
Platelets ; 30(4): 487-497, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29799304

RESUMO

Platelet hyperactivity is the hallmark of thrombosis and hemostasis disorders including atherosclerosis, diabetes, stroke, arthritis, and cancer causing significant mortality and morbidity. Therefore, regulating platelet hyperactivity is an ever growing interest. Very recently, basal autophagic process has been demonstrated to be essential for normal functioning of platelets. However, autophagy can be elevated above basal level under conditions like starvation, and how platelets respond in these settings remains to be elucidative. Therefore, in this study we demonstrate a substantial autophagy induction (above basal level) by starvation, which decreases platelet aggregation responses to various agonists. The decreased aggregation in starved platelets was restored in combination with autophagy inhibitors (3-methyladenine and NH4Cl) and acetate supplementation. Starved platelets also showed decreased calcium mobilization, granule release, and adhesive properties. Furthermore, ex vivo platelets obtained from starved rats showed increased autophagy markers and decreased aggregation responses to various agonists. Our results distinctly explain that enhanced autophagy and cellular energy depletion are the cause for decreased platelet activation and aggregation. The study emphasizes the cardinal role of starvation and autophagy in the management of diseases and disorders associated with platelet hyperactivity.


Assuntos
Plaquetas/metabolismo , Agregação Plaquetária/fisiologia , Animais , Autofagia , Humanos , Ratos Wistar
5.
Environ Toxicol ; 34(3): 262-270, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30461186

RESUMO

The catecholic derivative para-tertiary butyl catechol (PTBC) is a conventional antioxidant and polymerization inhibitor, which exhibits melanocytotoxic effects and contact dermatitis often leading to occupational leucoderma or vitiligo. Although numerous industrial workers will be in constant exposure to PTBC and its chances of getting entry into blood are most expected, its effect on blood components is still undisclosed. As platelets play a prominent role in dermatitis, inflammation, and immunity, in this study we have evaluated the effect of PTBC on human platelets in vitro. Exposure of platelets to PTBC showed increased reactive oxygen species (ROS), intracellular calcium, cardiolipin oxidation, mitochondrial permeability transition pore (MPTP) formation, activation of caspases, phosphatidylserine (PS) externalization and decreased mitochondrial membrane potential. In addition, there was a significant decrease in cellular glutathione level, increased γ-glutamyltransferase (GGT) activity and cell death. These findings demonstrate that PTBC could induce toxic effects on blood components, which is often ignored field of research. Since dermal exposure of humans to toxic chemicals covers an important issue in various industries, there is a need of such work to understand and update the long-term toxicities induced by PTBC usage in industrial sectors and public domain.


Assuntos
Antioxidantes/toxicidade , Plaquetas/citologia , Butanos/toxicidade , Apoptose/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Caspases/metabolismo , Glutationa/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Fosfatidilserinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Thorax ; 73(10): 908-917, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29853649

RESUMO

BACKGROUND: Exacerbation in asthma is associated with decreased expression of specific host defence peptides (HDPs) in the lungs. We examined the effects of a synthetic derivative of HDP, innate defence regulator (IDR) peptide IDR-1002, in house dust mite (HDM)-challenged murine model of asthma, in interleukin (IL)-33-challenged mice and in human primary bronchial epithelial cells (PBECs). METHODS: IDR-1002 (6 mg/kg per mouse) was administered (subcutaneously) in HDM-challenged and/or IL-33-challenged BALB/c mice. Lung function analysis was performed with increasing dose of methacholine by flexiVent small animal ventilator, cell differentials in bronchoalveolar lavage performed by modified Wright-Giemsa staining, and cytokines monitored by MesoScale Discovery assay and ELISA. PBECs stimulated with tumour necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ), with or without IDR-1002, were analysed by western blots. RESULTS: IDR-1002 blunted HDM challenge-induced airway hyper-responsiveness (AHR), and lung leucocyte accumulation including that of eosinophils and neutrophils, in HDM-challenged mice. Concomitantly, IDR-1002 suppressed HDM-induced IL-33 in the lungs. IFN-γ/TNF-α-induced IL-33 production was abrogated by IDR-1002 in PBECs. Administration of IL-33 in HDM-challenged mice, or challenge with IL-33 alone, mitigated the ability of IDR-1002 to control leucocyte accumulation in the lungs, suggesting that the suppression of IL-33 is essential for the anti-inflammatory activity of IDR-1002. In contrast, the peptide significantly reduced either HDM, IL-33 or HDM+IL-33 co-challenge-induced AHR in vivo. CONCLUSION: This study demonstrates that an immunomodulatory IDR peptide controls the pathophysiology of asthma in a murine model. As IL-33 is implicated in steroid-refractory severe asthma, our findings on the effects of IDR-1002 may contribute to the development of novel therapies for steroid-refractory severe asthma.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Asma/tratamento farmacológico , Citocinas/metabolismo , Imunomodulação/efeitos dos fármacos , Hipersensibilidade Respiratória/tratamento farmacológico , Animais , Asma/imunologia , Asma/metabolismo , Western Blotting , Líquido da Lavagem Broncoalveolar/citologia , Técnicas de Cultura de Células , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Feminino , Humanos , Pulmão/metabolismo , Pulmão/patologia , Cloreto de Metacolina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Pyroglyphidae/imunologia , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/metabolismo
7.
Biochem Biophys Res Commun ; 491(1): 183-191, 2017 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-28712866

RESUMO

Cell-free hemoglobin (Hb), a well-known marker of intravascular hemolysis, is eventually oxidized to methemoglobin (MtHb). Elevated levels of MtHb have been noted, alongside depleted levels of platelets, in several hemolytic diseases. The current study aims to probe the possible role of MtHb in platelet death, based on the facts that it is a pro-inflammatory and pro-apoptotic agent, as well as the sensitive nature of platelets and their tendency to undergo apoptosis under oxidative stress. An attempt is made to establish the link between hemolysis and thrombocytopenia, by deciphering the underlying molecular signaling pathways. The results of this study demonstrate that MtHb, not Hb exerts oxidative stress on platelets, which triggers their death via ROS-mediated mitochondrial apoptotic pathway. It was further established that the MtHb-induced platelet apoptotic events mediate through JNK and p38 MAPK activation. Thus, the study presents a mechanistic insight into the previous studies that reported the incidence of thrombocytopenia in hemolytic diseases. This study highlights the fate of platelets in intravascular hemolytic conditions, which demands the need for a specific treatment strategy considering the risks associated with thrombocytopenia during severe hemolytic diseases.


Assuntos
Apoptose/fisiologia , Plaquetas/fisiologia , MAP Quinase Quinase 7/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Apoptose/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Sistema Livre de Células/química , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Humanos , Metemoglobina/farmacologia , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia
8.
Toxicol Appl Pharmacol ; 334: 167-179, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28911973

RESUMO

Chronic hyperglycemia is one of the characteristic conditions associated with Diabetes Mellitus (DM), which often exerts deleterious effects on erythrocyte morphology and hemodynamic properties leading to anemia and diabetes-associated vascular complications. High glucose-induced over production of reactive oxygen species (ROS) can alter the blood cell metabolism and biochemical functions subsequently causing eryptosis (red blood cell death), yet another complication of concern in DM. Therefore, blocking high glucose-induced oxidative damage and subsequent eryptosis is of high importance in the better management of DM and associated vascular complications. In this study, we synthesized an oxolane derivative 1-(2,2-dimethyltetrahydrofuro[2,3][1,3]dioxol-5-yl)ethane-1,2-diol (DMTD), and demonstrated its efficacy to mitigate hyperglycemia-induced ROS generation and subsequent eryptosis. We showed that DMTD effectively inhibits high glucose-induced ROS generation, intracellular calcium levels, phosphaditylserine (PS) scrambling, calpain and band 3 activation, LDH leakage, protein glycation and lipid peroxidation, meanwhile enhances the antioxidant indices, osmotic fragility and Na+/K+-ATPase activity in erythrocytes. DMTD dose dependently decreased the glycated hemoglobin level and enhances the glucose utilization by erythrocytes in vitro. Further, DMTD alleviated the increase in ROS production, intracellular Ca2+ level and PS externalization in the erythrocytes of human diabetic subjects and enhanced the Na+/K+-ATPase activity. Taken together, the synthesized oxolane derivative DMTD could be a novel synthetic inhibitor of high glucose-induced oxidative stress and eryptosis. Considering the present results DMTD could be a potential therapeutic to treat DM and associated complications and open new avenues in developing synthetic therapeutic targeting of DM-associated complications.


Assuntos
Diabetes Mellitus/sangue , Membrana Eritrocítica/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Glucose/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Tiazóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Diabetes Mellitus/metabolismo , Relação Dose-Resposta a Droga , Glucose/administração & dosagem , Humanos , Peroxidação de Lipídeos , Camundongos , Estrutura Molecular , ATPase Trocadora de Sódio-Potássio/metabolismo , Tiazóis/administração & dosagem , Tiazóis/química
9.
Mediators Inflamm ; 2017: 2515408, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28572711

RESUMO

Buprenorphine is recommended for use as an analgesic in animal models including in murine models of collagen-induced arthritis (CIA). However, the effect of buprenorphine on the expression of disease-associated biomarkers is not well defined. We examined the effect of buprenorphine administration on disease progression and the expression of inflammatory and oxidative stress markers, in a murine model of CIA. Buprenorphine administration altered the expression of cytokines, IFN-γ, IL-6, and MMP-3, and oxidative markers, for example, iNOS, superoxide dismutase (SOD1), and catalase (CAT), in the CIA mice. As buprenorphine is an analgesic, we further monitored the association of expression of these biomarkers with pain scores in a human cohort of early rheumatoid arthritis (RA). Serum MMP-3 levels and blood mRNA expression of antioxidants sod1 and cat correlated with pain scores in the RA cohort. We have demonstrated that administration of buprenorphine alters the expression of inflammatory and oxidative stress-related molecular markers in a murine model of CIA. This caveat needs to be considered in animal experiments using buprenorphine as an analgesic, as it can be a confounding factor in murine studies used for prediction of response to therapy. Furthermore, the antioxidant enzymes that showed an association with pain scores in the human cohort may be explored as biomarkers for pain in future studies.


Assuntos
Analgésicos Opioides/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Buprenorfina/farmacologia , Estresse Oxidativo , Adulto , Idoso , Animais , Antioxidantes/metabolismo , Artrite Experimental/induzido quimicamente , Artrite Reumatoide/tratamento farmacológico , Biomarcadores/sangue , Catalase/sangue , Estudos de Coortes , Colágeno/química , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Inflamação , Masculino , Metaloproteinase 3 da Matriz/sangue , Metaloproteinase 3 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos DBA , Pessoa de Meia-Idade , Óxido Nítrico Sintase Tipo II/sangue , Reação em Cadeia da Polimerase em Tempo Real , Superóxido Dismutase-1/sangue
11.
J Pineal Res ; 59(2): 240-54, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26103459

RESUMO

Oxidative stress-induced methemoglobinemia remained an untouched area in venom pharmacology till date. This study for the first time explored the potential of animal venoms to oxidize hemoglobin to methemoglobin. In in vitro whole-blood assay, methemoglobin forming ability of venoms varied as Naja naja > Ophiophagus hannah > Echis carinatus > Daboia russellii > Apis mellifera > Mesobuthus tamulus > Hippasa partita. Being highly potential, N. naja venom was further studied to observe methemoglobin formation in RBCs and in combinations with PMNs and PBMCs, where maximum effect was observed in RBCs + PMNs combination. Naja naja venom/externally added methemoglobin-induced methemoglobin formation was in parallel with ROS generation in whole blood/RBCs/RBCs + PMNs/RBCs + PBMCs. In in vivo studies, the lethal dose (1 mg/kg body weight, i.p.) of N. naja venom readily induced methemoglobin formation, ROS generation, expression of inflammatory markers, and hypoxia-inducible factor-3α. Although the mice administered with three effective doses of antivenom recorded zero mortality; the methemoglobin and ROS levels remained high. However, one effective dose of antivenom when administered along with melatonin (1:50; venom/melatonin, w/w), not only offered 100% survival of experimental mice, but also significantly reduced methemoglobin level, and oxidative stress markers including hypoxia-inducible factor-3α. This study provides strong drive that, complementing melatonin would not only reduce the antivenom load, but for sure greatly increase the success rate of antivenom therapy and drastically minimize the global incidence of snakebite deaths. However, further detailed investigations are needed before translating the combined therapy towards the bed side.


Assuntos
Melatonina/farmacologia , Metemoglobinemia/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Mordeduras de Serpentes/tratamento farmacológico , Animais , Humanos , Metemoglobinemia/sangue , Metemoglobinemia/etiologia , Camundongos , Mordeduras de Serpentes/sangue , Venenos de Serpentes/toxicidade
12.
J Thromb Thrombolysis ; 38(3): 321-30, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24705676

RESUMO

Recent studies have reported the platelet proapoptotic propensity of plant-derived molecules such as, resveratrol, thymoquinone, andrographolide and gossypol. Meanwhile, there were also reports of phytochemicals such as cinnamtannin B1, which shows antiapoptotic effect towards platelets. Platelets are mainly involved in hemostasis, thrombosis and wound healing. However, altered platelet functions can have serious pathological outcomes that include cardiovascular diseases. Platelets are sensitive to external and internal stimuli including therapeutic and dietary components. The anuclear platelets do undergo apoptosis via mitochondrial pathway. However, exaggerated rate of platelet apoptosis could lead to thrombocytopenia and other bleeding disorders. The present study deals with ameliorative efficacy of crocin on sesamol-induced platelet apoptosis. The antiapoptotic property of crocin and the proapoptotic tendency of sesamol in platelets were previously demonstrated. Therefore, it was interesting to see how these two compounds would interact and wield their effects on human platelets. Crocin effectively inhibited sesamol-induced oxidative stress on platelets, which was evidenced by the measurement of endogenously generated reactive oxygen species, particularly hydrogen peroxide, and changes in thiol levels. Further, crocin abrogated sesamol-induced biochemical events of apoptosis in platelets, which include intracellular calcium mobilization, changes in mitochondrial membrane integrity, cytochrome c release, caspase activity and phosphatidylserine externalization. Even though sesamol has proapoptotic effects on platelets, its anti-platelet activity cannot be neglected. Thus, the study proposes that sesamol could be supplemented with crocin, an approach that could not only abolish the toxic effects of sesamol on platelets, but also enhance the quality of treatment due to their synergistic action.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Benzodioxóis/farmacologia , Plaquetas/metabolismo , Carotenoides/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fenóis/farmacologia , Plaquetas/citologia , Feminino , Humanos , Masculino
14.
Environ Pollut ; 342: 123087, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061431

RESUMO

Traffic-related air pollution (TRAP) exposure is associated with systemic health effects, which can be studied using blood-based markers. Although we have previously shown that high TRAP concentrations alter the plasma proteome, the concentration-response relationship between blood proteins and TRAP is unexplored in controlled human exposure studies. We aimed to identify concentration-dependent plasma markers of diesel exhaust (DE), a model of TRAP. Fifteen healthy non-smokers were enrolled into a double-blinded, crossover study where they were exposed to filtered air (FA) and DE at 20, 50 and 150 µg/m3 PM2.5 for 4h, separated by ≥ 4-week washouts. We collected blood at 24h post-exposure and used label-free mass spectrometry to quantify proteins in plasma. Proteins exhibiting a concentration-response, as determined by linear mixed effects models (LMEMs), were assessed for pathway enrichment using WebGestalt. Top candidates, identified by sparse partial least squares discriminant analysis and LMEMs, were confirmed using enzyme-linked immunoassays. Thereafter, we assessed correlations between proteins that showed a DE concentration-response and acute inflammatory endpoints, forced expiratory volume in 1 s (FEV1) and methacholine provocation concentration causing a 20% drop in FEV1 (PC20). DE exposure was associated with concentration-dependent alterations in 45 proteins, which were enriched in complement pathways. Of the 9 proteins selected for confirmatory immunoassays, based on complementary bioinformatic approaches to narrow targets and availability of high-quality assays, complement factor I (CFI) exhibited a significant concentration-dependent decrease (-0.02 µg/mL per µg/m3 of PM2.5, p = 0.04). Comparing to FA at discrete concentrations, CFI trended downward at 50 (-2.14 ± 1.18, p = 0.08) and significantly decreased at 150 µg/m3 PM2.5 (-2.93 ± 1.18, p = 0.02). CFI levels were correlated with FEV1, PC20 and nasal interleukin (IL)-6 and IL-1ß. This study details concentration-dependent alterations in the plasma proteome following DE exposure at concentrations relevant to occupational and community settings. CFI shows a robust concentration-response and association with established measures of airway function and inflammation.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Humanos , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Proteoma , Estudos Cross-Over , Testes de Função Respiratória , Interleucina-6 , Material Particulado/toxicidade , Material Particulado/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise
15.
J Innate Immun ; 16(1): 203-215, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38471488

RESUMO

INTRODUCTION: TNFα-inducible matrix metalloproteinases play a critical role in the process of airway remodeling in respiratory inflammatory disease including asthma. The cationic host defense peptide LL-37 is elevated in the lungs during airway inflammation. However, the impact of LL-37 on TNFα-driven processes is not well understood. Here, we examined the effect of LL-37 on TNFα-mediated responses in human bronchial epithelial cells (HBECs). METHODS: We used a slow off-rate modified aptamer-based proteomics approach to define the HBEC proteome altered in response to TNFα. Abundance of selected protein candidates and signaling intermediates was examined using immunoassays, ELISA and Western blots, and mRNA abundance was examined by qRT-PCR. RESULTS: Proteomics analysis revealed that 124 proteins were significantly altered, 12 proteins were enhanced by ≥2-fold compared to unstimulated cells, in response to TNFα. MMP9 was the topmost increased protein in response to TNFα, enhanced by ∼10-fold, and MMP13 was increased by ∼3-fold, compared to unstimulated cells. Furthermore, we demonstrated that LL-37 significantly suppressed TNFα-mediated MMP9 and MMP13 in HBEC. Mechanistic data revealed that TNFα-mediated MMP9 and MMP13 production is controlled by SRC kinase and that LL-37 enhances related upstream negative regulators, namely, phospho-AKT (T308) and TNFα-mediated TNFAIP3 or A20. CONCLUSIONS: The findings of this study suggest that LL-37 may play a role in intervening in the process of airway remodeling in chronic inflammatory respiratory disease such as asthma.


Assuntos
Remodelação das Vias Aéreas , Peptídeos Catiônicos Antimicrobianos , Asma , Brônquios , Catelicidinas , Células Epiteliais , Metaloproteinase 13 da Matriz , Metaloproteinase 9 da Matriz , Fator de Necrose Tumoral alfa , Humanos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Asma/imunologia , Asma/metabolismo , Células Cultivadas , Células Epiteliais/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Proteômica , Mucosa Respiratória/imunologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
16.
Biochem Biophys Res Commun ; 438(1): 198-204, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23880341

RESUMO

Melatonin is a pineal hormone that regulates circadian and seasonal rhythms. The chronobiotic role of melatonin corresponds with a repertoire of pharmacological properties. Besides, it has a wide range of therapeutic applications. However, recent studies have demonstrated its direct interaction with platelets: at physiological concentration it promotes platelet aggregation; on the other hand, at pharmacological doses it raises intracellular Ca(2+) leading to platelet activation, thrombus formation and cardiovascular disorders. In order to further probe its effects on platelets, the current study targeted platelet apoptosis and melatonin was found to stimulate apoptosis. The mitochondrial pathway of apoptosis was mainly investigated because of its susceptibility to oxidative stress-inducing factors including therapeutic and dietary elements. Melatonin significantly increased the generation of intracellular ROS and Ca(2+), facilitating mitochondrial membrane depolarization, cytochrome c release, caspase activation, protein phosphorylation and phosphatidylserine externalization. Further, the overall toxicity of melatonin on platelets was confirmed by MTT and lactate dehydrogenase assays. The elevated rate of platelet apoptosis has far reaching consequences including thrombocytopenia. Besides, platelets undergoing apoptosis release microparticles, which fuel thrombus formation and play a significant role in the pathophysiology of a number of diseases. In many parts of the world melatonin is an over-the-counter dietary supplement and alternative medicine. Since, melatonin displays platelet proapoptotic effect at a concentration attainable through therapeutic dosage, the present study sends a warning signal to the chronic use of melatonin as a therapeutic drug and questions its availability without a medical prescription.


Assuntos
Apoptose/efeitos dos fármacos , Plaquetas/fisiologia , Peróxido de Hidrogênio/metabolismo , Melatonina/toxicidade , Mitocôndrias/fisiologia , Mitofagia/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Apoptose/fisiologia , Plaquetas/efeitos dos fármacos , Plaquetas/ultraestrutura , Células Cultivadas , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Mitofagia/efeitos dos fármacos
17.
Eur J Nutr ; 52(7): 1787-99, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23269651

RESUMO

PURPOSE: The dietary sesamol is one of the important constituent of sesame seed that has been mainly claimed to combat cardiovascular disease and diabetes, which are the major secondary complications of arthritis. Thus, the present study was designed to evaluate the anti-arthritic, anti-inflammatory and anti-stress potentials of sesamol. METHODS: Arthritis was induced using Freund's complete adjuvant to hind paw of experimental rats. The physical and biochemical alterations and its recovery by sesamol were assessed by measuring enzymatic and non-enzymatic mediators. Arthritis-induced inflammation, oxidative stress and their protective by sesamol were measured by determining the levels of pro-inflammatory cytokines and oxidative stress markers. RESULTS: In the present study, sesamol was demonstrated to alleviate arthritis-induced cartilage degeneration by mitigating augmented serum levels of hyaluronidase and matrix metalloproteinases (MMP-13, MMP-3 and MMP-9). It also protected bone resorption by reducing the elevated levels of bone joint exoglycosidases, cathepsin D and tartarate-resistant acid phosphatases. Sesamol also abrogated the non-enzymatic inflammatory markers (TNF, IL-1ß, IL-6, COX-2, PGE2, ROS, and H2O2,) effectively. In addition, sesamol neutralizes arthritis-induced oxidative stress by restoring the levels of reactive oxygen species, lipid and hydro peroxides and sustained antioxidant homeostasis by re-establishing altered activities of superoxide dismutase, catalase and glutathione-s-transferase. CONCLUSION: Taken together, the study demonstrated the anti-arthritic, anti-inflammatory, anti-oxidative stress and chondro-protective potentials of sesamol in vivo. Thus, sesamol could be a single bullet that can fight arthritis as well as the secondary complications of arthritis such as cardio vascular disorders and diabetes.


Assuntos
Anti-Inflamatórios/administração & dosagem , Antioxidantes/administração & dosagem , Artrite Experimental/tratamento farmacológico , Benzodioxóis/administração & dosagem , Matriz Extracelular/metabolismo , Mediadores da Inflamação/metabolismo , Fenóis/administração & dosagem , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Catalase/metabolismo , Ciclo-Oxigenase 2/metabolismo , Glutationa Transferase/metabolismo , Peróxido de Hidrogênio/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
18.
Arthritis Res Ther ; 25(1): 161, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667385

RESUMO

Curcumin, a component of the South-Asian spice turmeric, elicits anti-inflammatory functions. We have previously demonstrated that a highly bioavailable formulation of cucurmin, Cureit/Acumin™ (CUR), can suppress disease onset and severity, in a collagen-induced arthritis (CIA) mouse model. In a previous study, we have also shown that the abundance of antimicrobial host defence peptides, specifically cathelicidin (CRAMP) and calprotectin (S100A8 and S100A9), is significantly increased in the joint tissues of CIA mice. Elevated levels of cathelicidin and calprotectin have been associated with the pathogenesis of rheumatoid arthritis. Therefore, in this study, we examined the effect CUR administration on the abundance of cathelicidin and calprotectin in the joints, in a CIA mouse model. Here, we demonstrate that daily oral administration of CUR significantly reduces the elevated levels of CRAMP and calprotectin to baseline in the joints of CIA mice. We also show a linear correlation between the abundance of these peptides in the joints with serum inflammatory cytokines TNFα, IFNγ, and MCP-1. Overall, our results suggest that oral administration of a bioavailable CUR can suppress cathelicidin and calprotectin in the joints and regulate both local (joints) and systemic (serum) inflammation, in inflammatory arthritis.


Assuntos
Artrite Experimental , Curcumina , Animais , Camundongos , Peptídeos Catiônicos Antimicrobianos , Catelicidinas , Complexo Antígeno L1 Leucocitário , Artrite Experimental/tratamento farmacológico , Modelos Animais de Doenças
19.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166688, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36925054

RESUMO

Cell-free heme (CFH) is a product of hemoglobin, myoglobin and hemoprotein degradation, which is a hallmark of pathologies associated with extensive hemolysis and tissue damage. CHF and iron collectively induce cytokine storm, lung injury, respiratory distress and infection susceptibility in the lungs suggesting their key role in the progression of lung disease pathology. We have previously demonstrated that heme-mediated reactive oxygen species (ROS) induces platelet activation and ferroptosis. However, interaction of ferroptotic platelets and neutrophils, the mechanism of action and associated complications remain unclear. In this study, we demonstrate that heme-induced P-selectin expression and Phosphatidylserine (PS) externalization in platelets via ASK-1-inflammasome axis increases platelet-neutrophil aggregates in circulation, resulting in Neutrophil extracellular traps (NET) formation in vitro and in vivo. Further, heme-induced platelet activation in mice increased platelet-neutrophil aggregates and accumulation of NETs in the lungs causing pulmonary damage. Thus, connecting CFH-mediated platelet activation to NETosis and pulmonary thrombosis. As lung infections induce acute respiratory stress, thrombosis and NETosis, we propose that heme -mediated platelet activation and ferroptosis might be crucial in such clinical manifestations. Further, considering the ability of redox modulators and ferroptosis inhibitors like FS-1, Lpx-1 and DFO to inhibit heme-induced ferroptotic platelets-mediated NETosis and pulmonary thrombosis. They could be potential adjuvant therapy to regulate respiratory distress-associated clinical complications.


Assuntos
Ferroptose , Pneumopatias , Síndrome do Desconforto Respiratório , Trombose , Camundongos , Animais , Heme , Ativação Plaquetária , Pulmão/patologia , Trombose/patologia
20.
Front Immunol ; 13: 923986, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837410

RESUMO

Biological sex influences disease severity, prevalence and response to therapy in allergic asthma. However, allergen-mediated sex-specific changes in lung protein biomarkers remain undefined. Here, we report sex-related differences in specific proteins secreted in the lungs of both mice and humans, in response to inhaled allergens. Female and male BALB/c mice (7-8 weeks) were intranasally challenged with the allergen house dust mite (HDM) for 2 weeks. Bronchoalveolar lavage fluid (BALF) was collected 24 hour after the last HDM challenge from allergen-naïve and HDM-challenged mice (N=10 per group, each sex). In a human study, adult participants were exposed to nebulized (2 min) allergens (based on individual sensitivity), BALF was obtained after 24 hour (N=5 each female and male). The BALF samples were examined in immunoblots for the abundance of 10 proteins shown to increase in response to allergen in both murine and human BALF, selected from proteomics studies. We showed significant sex-bias in allergen-driven increase in five out of the 10 selected proteins. Of these, increase in eosinophil peroxidase (EPX) was significantly higher in females compared to males, in both mice and human BALF. We also showed specific sex-related differences between murine and human samples. For example, allergen-driven increase in S100A8 and S100A9 was significantly higher in BALF of females compared to males in mice, but significantly higher in males compared to females in humans. Overall, this study provides sex-specific protein biomarkers that are enhanced in response to allergen in murine and human lungs, informing and motivating translational research in allergic asthma.


Assuntos
Alérgenos , Asma , Adulto , Alérgenos/efeitos adversos , Animais , Asma/metabolismo , Biomarcadores/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Pulmão , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pyroglyphidae , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA