Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
N Engl J Med ; 385(2): 179-186, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34161052

RESUMO

Viral variants of concern may emerge with dangerous resistance to the immunity generated by the current vaccines to prevent coronavirus disease 2019 (Covid-19). Moreover, if some variants of concern have increased transmissibility or virulence, the importance of efficient public health measures and vaccination programs will increase. The global response must be both timely and science based.


Assuntos
Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2 , COVID-19/transmissão , Vacinas contra COVID-19/imunologia , Humanos , Imunogenicidade da Vacina , Mutação , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Virulência
2.
N Engl J Med ; 384(6): 497-511, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33264556

RESUMO

BACKGROUND: World Health Organization expert groups recommended mortality trials of four repurposed antiviral drugs - remdesivir, hydroxychloroquine, lopinavir, and interferon beta-1a - in patients hospitalized with coronavirus disease 2019 (Covid-19). METHODS: We randomly assigned inpatients with Covid-19 equally between one of the trial drug regimens that was locally available and open control (up to five options, four active and the local standard of care). The intention-to-treat primary analyses examined in-hospital mortality in the four pairwise comparisons of each trial drug and its control (drug available but patient assigned to the same care without that drug). Rate ratios for death were calculated with stratification according to age and status regarding mechanical ventilation at trial entry. RESULTS: At 405 hospitals in 30 countries, 11,330 adults underwent randomization; 2750 were assigned to receive remdesivir, 954 to hydroxychloroquine, 1411 to lopinavir (without interferon), 2063 to interferon (including 651 to interferon plus lopinavir), and 4088 to no trial drug. Adherence was 94 to 96% midway through treatment, with 2 to 6% crossover. In total, 1253 deaths were reported (median day of death, day 8; interquartile range, 4 to 14). The Kaplan-Meier 28-day mortality was 11.8% (39.0% if the patient was already receiving ventilation at randomization and 9.5% otherwise). Death occurred in 301 of 2743 patients receiving remdesivir and in 303 of 2708 receiving its control (rate ratio, 0.95; 95% confidence interval [CI], 0.81 to 1.11; P = 0.50), in 104 of 947 patients receiving hydroxychloroquine and in 84 of 906 receiving its control (rate ratio, 1.19; 95% CI, 0.89 to 1.59; P = 0.23), in 148 of 1399 patients receiving lopinavir and in 146 of 1372 receiving its control (rate ratio, 1.00; 95% CI, 0.79 to 1.25; P = 0.97), and in 243 of 2050 patients receiving interferon and in 216 of 2050 receiving its control (rate ratio, 1.16; 95% CI, 0.96 to 1.39; P = 0.11). No drug definitely reduced mortality, overall or in any subgroup, or reduced initiation of ventilation or hospitalization duration. CONCLUSIONS: These remdesivir, hydroxychloroquine, lopinavir, and interferon regimens had little or no effect on hospitalized patients with Covid-19, as indicated by overall mortality, initiation of ventilation, and duration of hospital stay. (Funded by the World Health Organization; ISRCTN Registry number, ISRCTN83971151; ClinicalTrials.gov number, NCT04315948.).


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Hidroxicloroquina/uso terapêutico , Interferon beta-1a/uso terapêutico , Lopinavir/uso terapêutico , Monofosfato de Adenosina/uso terapêutico , Idoso , Alanina/uso terapêutico , Antivirais/administração & dosagem , Antivirais/efeitos adversos , COVID-19/mortalidade , Quimioterapia Combinada , Feminino , Mortalidade Hospitalar , Hospitalização , Humanos , Análise de Intenção de Tratamento , Estimativa de Kaplan-Meier , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Respiração Artificial , Falha de Tratamento
3.
PLoS Pathog ; 18(1): e1010161, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35025969

RESUMO

The global response to Coronavirus Disease 2019 (COVID-19) is now facing new challenges such as vaccine inequity and the emergence of SARS-CoV-2 variants of concern (VOCs). Preclinical models of disease, in particular animal models, are essential to investigate VOC pathogenesis, vaccine correlates of protection and postexposure therapies. Here, we provide an update from the World Health Organization (WHO) COVID-19 modeling expert group (WHO-COM) assembled by WHO, regarding advances in preclinical models. In particular, we discuss how animal model research is playing a key role to evaluate VOC virulence, transmission and immune escape, and how animal models are being refined to recapitulate COVID-19 demographic variables such as comorbidities and age.


Assuntos
COVID-19/etiologia , Modelos Animais de Doenças , SARS-CoV-2 , Fatores Etários , Animais , COVID-19/prevenção & controle , COVID-19/terapia , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/imunologia , Comorbidade , Humanos , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade
5.
Clin Trials ; 19(6): 647-654, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35866633

RESUMO

BACKGROUND: The threat of a possible Marburg virus disease outbreak in Central and Western Africa is growing. While no Marburg virus vaccines are currently available for use, several candidates are in the pipeline. Building on knowledge and experiences in the designs of vaccine efficacy trials against other pathogens, including SARS-CoV-2, we develop designs of randomized Phase 3 vaccine efficacy trials for Marburg virus vaccines. METHODS: A core protocol approach will be used, allowing multiple vaccine candidates to be tested against controls. The primary objective of the trial will be to evaluate the effect of each vaccine on the rate of virologically confirmed Marburg virus disease, although Marburg infection assessed via seroconversion could be the primary objective in some cases. The overall trial design will be a mixture of individually and cluster-randomized designs, with individual randomization done whenever possible. Clusters will consist of either contacts and contacts of contacts of index cases, that is, ring vaccination, or other transmission units. RESULTS: The primary efficacy endpoint will be analysed as a time-to-event outcome. A vaccine will be considered successful if its estimated efficacy is greater than 50% and has sufficient precision to rule out that true efficacy is less than 30%. This will require approximately 150 total endpoints, that is, cases of confirmed Marburg virus disease, per vaccine/comparator combination. Interim analyses will be conducted after 50 and after 100 events. Statistical analysis of the trial will be blended across the different types of designs. Under the assumption of a 6-month attack rate of 1% of the participants in the placebo arm for both the individually and cluster-randomized populations, the most likely sample size is about 20,000 participants per arm. CONCLUSION: This event-driven design takes into the account the potentially sporadic spread of Marburg virus. The proposed trial design may be applicable for other pathogens against which effective vaccines are not yet available.


Assuntos
COVID-19 , Doenças Transmissíveis Emergentes , Doença do Vírus de Marburg , Marburgvirus , Vacinas , Animais , Humanos , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/prevenção & controle , Doença do Vírus de Marburg/prevenção & controle , SARS-CoV-2
6.
Clin Trials ; 18(3): 335-342, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33535811

RESUMO

BACKGROUND: Recently emerging results from a few placebo-controlled randomized trials of COVID-19 vaccines revealed estimates of 62%-95% relative reductions in risk of virologically confirmed symptomatic COVID-19 disease, over approximately 2-month average follow-up period. Additional safe and effective COVID-19 vaccines are needed in a timely manner to adequately address the pandemic on an international scale. Such safe and effective vaccines would be especially appealing for international deployment if they also have favorable stability, supply, and potential for implementation in mass vaccination campaigns. Randomized trials provide particularly reliable insights about vaccine efficacy and safety. While enhanced efficiency and interpretability can be obtained from placebo-controlled trials, in settings where their conduct is no longer possible, randomized non-inferiority trials may enable obtaining reliable evaluations of experimental vaccines through direct comparison with active comparator vaccines established to have worthwhile efficacy. METHODS: The usual objective of non-inferiority trials is to reliably assess whether the efficacy of an experimental vaccine is not unacceptably worse than that of an active control vaccine previously established to be effective, likely in a placebo-controlled trial. This is formally achieved by ruling out a non-inferiority margin identified to be the minimum threshold for what would constitute an unacceptable loss of efficacy. This article not only investigates non-inferiority margins, denoted by δ, that address the usual objective of determining whether the experimental vaccine is "at least similarly effective to" the active comparator vaccine in the non-inferiority trial, but also develops non-inferiority margins, denoted by δo, intended to address the worldwide need for multiple safe and effective vaccines by satisfying the less stringent requirement that the experimental vaccine be "at least similarly effective to" an active comparator vaccine having efficacy that satisfies the widely accepted World Health Organization-Food and Drug Administration criteria for "worthwhile" vaccine efficacy. RESULTS: Using the margin δ enables non-inferiority trials to reliably evaluate experimental vaccines that truly are similarly effective to an active comparator vaccine having any level of "worthwhile" efficacy. When active comparator vaccines have efficacy in the range of 50%-70%, non-inferiority trials designed to use the margin δo have appealing properties, especially for experimental vaccines having true efficacy of approximately 60%. CONCLUSION: Non-inferiority trials using the proposed margins may enable reliable randomized evaluations of efficacy and safety of experimental COVID-19 vaccines. Such trials often require approximately two- to three-fold the person-years follow-up than a placebo-controlled trial. This could be achieved, without substantive increases in sample size, by increasing the average duration of follow-up from 2 months to approximately 4-6 months, assuming efficacy of the active comparator vaccine has been reliably evaluated over that longer duration.


Assuntos
Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Estudos de Equivalência como Asunto , Humanos , Pandemias/prevenção & controle , SARS-CoV-2 , Tamanho da Amostra , Método Simples-Cego , Fatores de Tempo , Resultado do Tratamento
7.
Clin Trials ; 18(4): 391-397, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34041932

RESUMO

BACKGROUND: Although several COVID-19 vaccines have been found to be effective in rigorous evaluation and have emerging availability in parts of the world, their supply will be inadequate to meet international needs for a considerable period of time. There also will be continued interest in vaccines that are more effective or have improved scalability to facilitate mass vaccination campaigns. Ongoing clinical testing of new vaccines also will be needed as variant strains continue to emerge that may elude some aspects of immunity induced by current vaccines. Randomized clinical trials meaningfully enhance the efficiency and reliability of such clinical testing. In clinical settings with limited or no access to known effective vaccines, placebo-controlled randomized trials of new vaccines remain a preferred approach to maximize the reliability, efficiency and interpretability of results. When emerging availability of licensed vaccines makes it no longer possible to use a placebo control, randomized active comparator non-inferiority trials may enable reliable insights. METHODS: In this article, "hybrid" methods are proposed to address settings where, during the conduct of a placebo-controlled trial, a judgment is made to replace the placebo arm by a licensed COVID-19 vaccine due to emerging availability of effective vaccines in regions participating in that trial. These hybrid methods are based on proposed statistics that aggregate evidence to formally test as well as to estimate the efficacy of the experimental vaccine, by combining placebo-controlled data during the first period of trial conduct with active-controlled data during the second period. RESULTS: Application of the proposed methods is illustrated in two important scenarios where the active control vaccine would become available in regions engaging in the experimental vaccine's placebo-controlled trial: in the first, the active comparator's vaccine efficacy would have been established to be 50%-70% for the 4- to 6-month duration of follow-up of its placebo-controlled trial; in the second, the active comparator's vaccine efficacy would have been established to be 90%-95% during that duration. These two scenarios approximate what has been seen with adenovirus vaccines or mRNA vaccines, respectively, assuming the early estimates of vaccine efficacy for those vaccines would hold over longer-term follow-up. CONCLUSION: The proposed hybrid methods could readily play an important role in the near future in the design, conduct and analysis of randomized clinical trials performed to address the need for multiple additional vaccines reliably established to be safe and have worthwhile efficacy in reducing the risk of symptomatic disease from SARS-CoV-2 infections.


Assuntos
Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Grupos Controle , Humanos , Placebos , SARS-CoV-2
8.
Clin Infect Dis ; 71(11): 2872-2879, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31784751

RESUMO

BACKGROUND: In October 2015, 65 people came into direct contact with a healthcare worker presenting with a late reactivation of Ebola virus disease (EVD) in the United Kingdom. Vaccination was offered to 45 individuals with an initial assessment of high exposure risk. METHODS: Approval for rapid expanded access to the recombinant vesicular stomatitis virus-Zaire Ebola virus (rVSV-ZEBOV) vaccine as an unlicensed emergency medicine was obtained from the relevant authorities. An observational follow-up study was carried out for 1 year following vaccination. RESULTS: Twenty-six of 45 individuals elected to receive vaccination between 10 and 11 October 2015 following written informed consent. By day 14, 39% had seroconverted, increasing to 87% by day 28 and 100% by 3 months, although these responses were not always sustained. Neutralizing antibody responses were detectable in 36% by day 14 and 73% at 12 months. Common side effects included fatigue, myalgia, headache, arthralgia, and fever. These were positively associated with glycoprotein-specific T-cell but not immunoglobulin (Ig) M or IgG antibody responses. No severe vaccine-related adverse events were reported. No one exposed to the virus became infected. CONCLUSIONS: This paper reports the use of the rVSV-ZEBOV vaccine given as an emergency intervention to individuals exposed to a patient presenting with a late reactivation of EVD. The vaccine was relatively well tolerated, but a high percentage developed a fever ≥37.5°C, necessitating urgent screening for Ebola virus, and a small number developed persistent arthralgia.


Assuntos
Vacinas contra Ebola/uso terapêutico , Doença pelo Vírus Ebola , Profilaxia Pós-Exposição , Anticorpos Antivirais , Ebolavirus , Seguimentos , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Recidiva , Reino Unido
9.
Clin Infect Dis ; 69(6): 1071-1078, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30689799

RESUMO

We sought datasets with granular age distributions of rotavirus-positive disease presentations among children <5 years of age, before the introduction of rotavirus vaccines. We identified 117 datasets and fit parametric age distributions to each country dataset and mortality stratum. We calculated the median age and the cumulative proportion of rotavirus gastroenteritis events expected to occur at ages between birth and 5.0 years. The median age of rotavirus-positive hospital admissions was 38 weeks (interquartile range [IQR], 25-58 weeks) in countries with very high child mortality and 65 weeks (IQR, 40-107 weeks) in countries with very low or low child mortality. In countries with very high child mortality, 69% of rotavirus-positive admissions in children <5 years of age were in the first year of life, with 3% by 10 weeks, 8% by 15 weeks, and 27% by 26 weeks. This information is critical for assessing the potential benefits of alternative rotavirus vaccination schedules in different countries and for monitoring program impact.


Assuntos
Infecções por Rotavirus/epidemiologia , Rotavirus , Distribuição por Idade , Mortalidade da Criança , Pré-Escolar , Serviços Médicos de Emergência/estatística & dados numéricos , Feminino , Gastroenterite/epidemiologia , Gastroenterite/prevenção & controle , Gastroenterite/virologia , Geografia Médica , Saúde Global , Humanos , Lactente , Recém-Nascido , Masculino , Rotavirus/imunologia , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/virologia , Vacinas contra Rotavirus , Vacinação , Fluxo de Trabalho
10.
Am J Epidemiol ; 188(7): 1319-1327, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30941398

RESUMO

Understanding risk factors for Ebola transmission is key for effective prediction and design of interventions. We used data on 860 cases in 129 chains of transmission from the latter half of the 2013-2016 Ebola epidemic in Guinea. Using negative binomial regression, we determined characteristics associated with the number of secondary cases resulting from each infected individual. We found that attending an Ebola treatment unit was associated with a 38% decrease in secondary cases (incidence rate ratio (IRR) = 0.62, 95% confidence interval (CI): 0.38, 0.99) among individuals that did not survive. Unsafe burial was associated with a higher number of secondary cases (IRR = 1.82, 95% CI: 1.10, 3.02). The average number of secondary cases was higher for the first generation of a transmission chain (mean = 1.77) compared with subsequent generations (mean = 0.70). Children were least likely to transmit (IRR = 0.35, 95% CI: 0.21, 0.57) compared with adults, whereas older adults were associated with higher numbers of secondary cases. Men were less likely to transmit than women (IRR = 0.71, 95% CI: 0.55, 0.93). This detailed surveillance data set provided an invaluable insight into transmission routes and risks. Our analysis highlights the key role that age, receiving treatment, and safe burial played in the spread of EVD.


Assuntos
Doença pelo Vírus Ebola/transmissão , Fatores Etários , Assistência Ambulatorial/estatística & dados numéricos , Surtos de Doenças , Feminino , Rituais Fúnebres , Guiné/epidemiologia , Doença pelo Vírus Ebola/epidemiologia , Humanos , Incidência , Masculino , Fatores de Risco , Fatores Sexuais
11.
Lancet ; 389(10068): 505-518, 2017 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-28017403

RESUMO

BACKGROUND: rVSV-ZEBOV is a recombinant, replication competent vesicular stomatitis virus-based candidate vaccine expressing a surface glycoprotein of Zaire Ebolavirus. We tested the effect of rVSV-ZEBOV in preventing Ebola virus disease in contacts and contacts of contacts of recently confirmed cases in Guinea, west Africa. METHODS: We did an open-label, cluster-randomised ring vaccination trial (Ebola ça Suffit!) in the communities of Conakry and eight surrounding prefectures in the Basse-Guinée region of Guinea, and in Tomkolili and Bombali in Sierra Leone. We assessed the efficacy of a single intramuscular dose of rVSV-ZEBOV (2×107 plaque-forming units administered in the deltoid muscle) in the prevention of laboratory confirmed Ebola virus disease. After confirmation of a case of Ebola virus disease, we definitively enumerated on a list a ring (cluster) of all their contacts and contacts of contacts including named contacts and contacts of contacts who were absent at the time of the trial team visit. The list was archived, then we randomly assigned clusters (1:1) to either immediate vaccination or delayed vaccination (21 days later) of all eligible individuals (eg, those aged ≥18 years and not pregnant, breastfeeding, or severely ill). An independent statistician generated the assignment sequence using block randomisation with randomly varying blocks, stratified by location (urban vs rural) and size of rings (≤20 individuals vs >20 individuals). Ebola response teams and laboratory workers were unaware of assignments. After a recommendation by an independent data and safety monitoring board, randomisation was stopped and immediate vaccination was also offered to children aged 6-17 years and all identified rings. The prespecified primary outcome was a laboratory confirmed case of Ebola virus disease with onset 10 days or more from randomisation. The primary analysis compared the incidence of Ebola virus disease in eligible and vaccinated individuals assigned to immediate vaccination versus eligible contacts and contacts of contacts assigned to delayed vaccination. This trial is registered with the Pan African Clinical Trials Registry, number PACTR201503001057193. FINDINGS: In the randomised part of the trial we identified 4539 contacts and contacts of contacts in 51 clusters randomly assigned to immediate vaccination (of whom 3232 were eligible, 2151 consented, and 2119 were immediately vaccinated) and 4557 contacts and contacts of contacts in 47 clusters randomly assigned to delayed vaccination (of whom 3096 were eligible, 2539 consented, and 2041 were vaccinated 21 days after randomisation). No cases of Ebola virus disease occurred 10 days or more after randomisation among randomly assigned contacts and contacts of contacts vaccinated in immediate clusters versus 16 cases (7 clusters affected) among all eligible individuals in delayed clusters. Vaccine efficacy was 100% (95% CI 68·9-100·0, p=0·0045), and the calculated intraclass correlation coefficient was 0·035. Additionally, we defined 19 non-randomised clusters in which we enumerated 2745 contacts and contacts of contacts, 2006 of whom were eligible and 1677 were immediately vaccinated, including 194 children. The evidence from all 117 clusters showed that no cases of Ebola virus disease occurred 10 days or more after randomisation among all immediately vaccinated contacts and contacts of contacts versus 23 cases (11 clusters affected) among all eligible contacts and contacts of contacts in delayed plus all eligible contacts and contacts of contacts never vaccinated in immediate clusters. The estimated vaccine efficacy here was 100% (95% CI 79·3-100·0, p=0·0033). 52% of contacts and contacts of contacts assigned to immediate vaccination and in non-randomised clusters received the vaccine immediately; vaccination protected both vaccinated and unvaccinated people in those clusters. 5837 individuals in total received the vaccine (5643 adults and 194 children), and all vaccinees were followed up for 84 days. 3149 (53·9%) of 5837 individuals reported at least one adverse event in the 14 days after vaccination; these were typically mild (87·5% of all 7211 adverse events). Headache (1832 [25·4%]), fatigue (1361 [18·9%]), and muscle pain (942 [13·1%]) were the most commonly reported adverse events in this period across all age groups. 80 serious adverse events were identified, of which two were judged to be related to vaccination (one febrile reaction and one anaphylaxis) and one possibly related (influenza-like illness); all three recovered without sequelae. INTERPRETATION: The results add weight to the interim assessment that rVSV-ZEBOV offers substantial protection against Ebola virus disease, with no cases among vaccinated individuals from day 10 after vaccination in both randomised and non-randomised clusters. FUNDING: WHO, UK Wellcome Trust, the UK Government through the Department of International Development, Médecins Sans Frontières, Norwegian Ministry of Foreign Affairs (through the Research Council of Norway's GLOBVAC programme), and the Canadian Government (through the Public Health Agency of Canada, Canadian Institutes of Health Research, International Development Research Centre and Department of Foreign Affairs, Trade and Development).


Assuntos
Vacinas contra Ebola , Doença pelo Vírus Ebola/prevenção & controle , Adolescente , Adulto , Criança , Análise por Conglomerados , Busca de Comunicante , Ebolavirus , Feminino , Guiné , Doença pelo Vírus Ebola/diagnóstico , Doença pelo Vírus Ebola/transmissão , Humanos , Masculino , Glicoproteínas de Membrana , Pessoa de Meia-Idade , Resultado do Tratamento , Vesiculovirus , Adulto Jovem
12.
N Engl J Med ; 372(16): 1519-29, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25875257

RESUMO

BACKGROUND: Aerosolized vaccine can be used as a needle-free method of immunization against measles, a disease that remains a major cause of illness and death. Data on the immunogenicity of aerosolized vaccine against measles in children are inconsistent. METHODS: We conducted an open-label noninferiority trial involving children 9.0 to 11.9 months of age in India who were eligible to receive a first dose of measles vaccine. Children were randomly assigned to receive a single dose of vaccine by means of either aerosol inhalation or a subcutaneous injection. The primary end points were seropositivity for antibodies against measles and adverse events 91 days after vaccination. The noninferiority margin was 5 percentage points. RESULTS: A total of 1001 children were assigned to receive aerosolized vaccine, and 1003 children were assigned to receive subcutaneous vaccine; 1956 of all the children (97.6%) were followed to day 91, but outcome data were missing for 331 children because of thawed specimens. In the per-protocol population, data on 1560 of 2004 children (77.8%) could be evaluated. At day 91, a total of 662 of 775 children (85.4%; 95% confidence interval [CI], 82.5 to 88.0) in the aerosol group, as compared with 743 of 785 children (94.6%; 95% CI, 92.7 to 96.1) in the subcutaneous group, were seropositive, a difference of -9.2 percentage points (95% CI, -12.2 to -6.3). Findings were similar in the full-analysis set (673 of 788 children in the aerosol group [85.4%] and 754 of 796 children in the subcutaneous group [94.7%] were seropositive at day 91, a difference of -9.3 percentage points [95% CI, -12.3 to -6.4]) and after multiple imputation of missing results. No serious adverse events were attributable to measles vaccination. Adverse-event profiles were similar in the two groups. CONCLUSIONS: Aerosolized vaccine against measles was immunogenic, but, at the prespecified margin, the aerosolized vaccine was inferior to the subcutaneous vaccine with respect to the rate of seropositivity. (Funded by the Bill and Melinda Gates Foundation; Measles Aerosol Vaccine Project Clinical Trials Registry-India number, CTRI/2009/091/000673.).


Assuntos
Vacina contra Sarampo/administração & dosagem , Vírus do Sarampo/imunologia , Sarampo/prevenção & controle , Administração por Inalação , Aerossóis , Anticorpos Antivirais/sangue , Feminino , Humanos , Índia , Lactente , Injeções Subcutâneas , Masculino , Sarampo/imunologia , Vacina contra Sarampo/efeitos adversos , Vacina contra Sarampo/imunologia
16.
Lancet ; 386(9996): 857-66, 2015 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-26248676

RESUMO

BACKGROUND: A recombinant, replication-competent vesicular stomatitis virus-based vaccine expressing a surface glycoprotein of Zaire Ebolavirus (rVSV-ZEBOV) is a promising Ebola vaccine candidate. We report the results of an interim analysis of a trial of rVSV-ZEBOV in Guinea, west Africa. METHODS: For this open-label, cluster-randomised ring vaccination trial, suspected cases of Ebola virus disease in Basse-Guinée (Guinea, west Africa) were independently ascertained by Ebola response teams as part of a national surveillance system. After laboratory confirmation of a new case, clusters of all contacts and contacts of contacts were defined and randomly allocated 1:1 to immediate vaccination or delayed (21 days later) vaccination with rVSV-ZEBOV (one dose of 2 × 10(7) plaque-forming units, administered intramuscularly in the deltoid muscle). Adults (age ≥18 years) who were not pregnant or breastfeeding were eligible for vaccination. Block randomisation was used, with randomly varying blocks, stratified by location (urban vs rural) and size of rings (≤20 vs >20 individuals). The study is open label and masking of participants and field teams to the time of vaccination is not possible, but Ebola response teams and laboratory workers were unaware of allocation to immediate or delayed vaccination. Taking into account the incubation period of the virus of about 10 days, the prespecified primary outcome was laboratory-confirmed Ebola virus disease with onset of symptoms at least 10 days after randomisation. The primary analysis was per protocol and compared the incidence of Ebola virus disease in eligible and vaccinated individuals in immediate vaccination clusters with the incidence in eligible individuals in delayed vaccination clusters. This trial is registered with the Pan African Clinical Trials Registry, number PACTR201503001057193. FINDINGS: Between April 1, 2015, and July 20, 2015, 90 clusters, with a total population of 7651 people were included in the planned interim analysis. 48 of these clusters (4123 people) were randomly assigned to immediate vaccination with rVSV-ZEBOV, and 42 clusters (3528 people) were randomly assigned to delayed vaccination with rVSV-ZEBOV. In the immediate vaccination group, there were no cases of Ebola virus disease with symptom onset at least 10 days after randomisation, whereas in the delayed vaccination group there were 16 cases of Ebola virus disease from seven clusters, showing a vaccine efficacy of 100% (95% CI 74·7-100·0; p=0·0036). No new cases of Ebola virus disease were diagnosed in vaccinees from the immediate or delayed groups from 6 days post-vaccination. At the cluster level, with the inclusion of all eligible adults, vaccine effectiveness was 75·1% (95% CI -7·1 to 94·2; p=0·1791), and 76·3% (95% CI -15·5 to 95·1; p=0·3351) with the inclusion of everyone (eligible or not eligible for vaccination). 43 serious adverse events were reported; one serious adverse event was judged to be causally related to vaccination (a febrile episode in a vaccinated participant, which resolved without sequelae). Assessment of serious adverse events is ongoing. INTERPRETATION: The results of this interim analysis indicate that rVSV-ZEBOV might be highly efficacious and safe in preventing Ebola virus disease, and is most likely effective at the population level when delivered during an Ebola virus disease outbreak via a ring vaccination strategy. FUNDING: WHO, with support from the Wellcome Trust (UK); Médecins Sans Frontières; the Norwegian Ministry of Foreign Affairs through the Research Council of Norway; and the Canadian Government through the Public Health Agency of Canada, Canadian Institutes of Health Research, International Development Research Centre, and Department of Foreign Affairs, Trade and Development.


Assuntos
Vacinas contra Ebola , Doença pelo Vírus Ebola/prevenção & controle , Adulto , Ebolavirus/imunologia , Feminino , Vetores Genéticos , Guiné/epidemiologia , Doença pelo Vírus Ebola/epidemiologia , Humanos , Incidência , Estimativa de Kaplan-Meier , Masculino , Glicoproteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Vacinação/métodos , Vesiculovirus/metabolismo , Adulto Jovem
19.
Virus Evol ; 9(1): vead007, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926449

RESUMO

Transmission trees can be established through detailed contact histories, statistical or phylogenetic inference, or a combination of methods. Each approach has its limitations, and the extent to which they succeed in revealing a 'true' transmission history remains unclear. In this study, we compared the transmission trees obtained through contact tracing investigations and various inference methods to identify the contribution and value of each approach. We studied eighty-six sequenced cases reported in Guinea between March and November 2015. Contact tracing investigations classified these cases into eight independent transmission chains. We inferred the transmission history from the genetic sequences of the cases (phylogenetic approach), their onset date (epidemiological approach), and a combination of both (combined approach). The inferred transmission trees were then compared to those from the contact tracing investigations. Inference methods using individual data sources (i.e. the phylogenetic analysis and the epidemiological approach) were insufficiently informative to accurately reconstruct the transmission trees and the direction of transmission. The combined approach was able to identify a reduced pool of infectors for each case and highlight likely connections among chains classified as independent by the contact tracing investigations. Overall, the transmissions identified by the contact tracing investigations agreed with the evolutionary history of the viral genomes, even though some cases appeared to be misclassified. Therefore, collecting genetic sequences during outbreak is key to supplement the information contained in contact tracing investigations. Although none of the methods we used could identify one unique infector per case, the combined approach highlighted the added value of mixing epidemiological and genetic information to reconstruct who infected whom.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA