Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 93(24): 8484-8492, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34101419

RESUMO

The thermal stabilities of endogenous, intact proteins and protein assemblies in complex mixtures were characterized in parallel by means of variable-temperature electrospray ionization coupled to mass spectrometry (vT-ESI-MS). The method is demonstrated by directly measuring the melting transitions of seven proteins from a mixture of proteins derived from ribosomes. A proof-of-concept measurement of a fraction of an Escherichia coli lysate is provided to extend this approach to characterize the thermal stability of a proteome. As the solution temperature is increased, proteins and protein complexes undergo structural and organizational transitions; for each species, the folded ↔ unfolded and assembled ↔ disassembled populations are monitored based on changes in vT-ESI-MS charge state distributions and masses. The robustness of the approach illustrates a step toward the proteome-wide characterization of thermal stabilities and structural transitions-the stabilitome.


Assuntos
Proteínas Ribossômicas , Espectrometria de Massas por Ionização por Electrospray , Escherichia coli , Proteoma , Temperatura
2.
J Am Soc Mass Spectrom ; 35(6): 1063-1068, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38748611

RESUMO

Bortezomib, a small dipeptide-like molecule, is a proteasome inhibitor used widely in the treatment of myeloma and lymphoma. This molecule reacts with threonine side chains near the center of the 20S proteasome and disrupts proteostasis by blocking enzymatic sites that are responsible for protein degradation. In this work, we use novel mass-spectrometry-based techniques to examine the influence of bortezomib on the structures and stabilities of the 20S core particle. These studies indicate that bortezomib binding dramatically favors compact 20S structures (in which the axial gate is closed) over larger structures (in which the axial gate is open)─suppressing gate opening by factors of at least ∼400 to 1300 over the temperature range that is studied. Thus, bortezomib may also restrict degradation in the 20S proteasome by preventing substrates from entering the catalytic pore. That bortezomib influences structures at the entrance region of the pore at such a long distance (∼65 to 75 Å) from its binding sites raises a number of interesting biophysical issues.


Assuntos
Bortezomib , Complexo de Endopeptidases do Proteassoma , Inibidores de Proteassoma , Bortezomib/farmacologia , Bortezomib/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Modelos Moleculares , Conformação Proteica/efeitos dos fármacos , Humanos
3.
J Am Soc Mass Spectrom ; 34(8): 1559-1568, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37418419

RESUMO

Ion mobility spectrometry-mass spectrometry (IMS-MS) experiments on a cyclic IMS instrument were used to examine heterogeneous distributions of structures found in the 15+ to 18+ charge states of the hemoglobin tetramer (Hb). The resolving power of IMS measurements is known to increase with increasing drift-region length. This effect is not significant for Hb charge states as peaks were shown to broaden with increasing drift-region length. This observation suggests that multiple structures with similar cross sections may be present. To examine this hypothesis, selections of drift time distributions were isolated and subsequently reinjected into the mobility region for additional separation. These IMS-IMS experiments demonstrate that selected regions separate further upon additional passes around the drift cell, consistent with the idea that initial resolving power was limited due to the presence of many closely related conformations. Additional variable temperature electrospray ionization (vT-ESI) experiments were conducted to study how changing the solution temperature affects solution conformations. Some features in these IMS-IMS studies were observed to change similarly with solution temperature compared to features in the single IMS distribution. Other features changed differently in the selected mobility data, indicating that solution structures that were obscured upon IMS analysis because of the complex heterogeneity of the original distribution are discernible after reducing the number of conformers that are analyzed by further IMS analysis. These results illustrate that the combination of vT-ESI with IMS-IMS is useful for resolving and exploring conformer distributions and stabilities in systems that exhibit a large degree of structural heterogeneity.


Assuntos
Hemoglobinas , Espectrometria de Mobilidade Iônica , Espectrometria de Massas/métodos , Conformação Molecular , Temperatura
4.
J Phys Chem Lett ; 14(21): 5014-5017, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37224454

RESUMO

Mass spectrometry studies of the stability of the S. cerevisiae 20S proteasome from 11 to 55 °C reveal a series of related configurations and coupled transitions that appear to be associated with opening of the proteolytic core. We find no evidence for dissociation, and all transitions are reversible. A thermodynamic analysis indicates that configurations fall into three general types of structures: enthalpically stabilized, tightly closed (observed as the +54 to +58 charge states) configurations; high-entropy (+60 to +66) states that are proposed as precursors to pore opening; and larger (+70 to +79) partially and fully open pore structures. In the absence of the 19S regulatory unit, the mechanism for opening the 20S pore appears to involve a charge-priming process that loosens the closed-pore configuration. Only a small fraction (≤2%) of these 20S precursor configurations appear to open and thus expose the catalytic cavity.


Assuntos
Complexo de Endopeptidases do Proteassoma , Saccharomyces cerevisiae , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteólise
5.
J Am Soc Mass Spectrom ; 32(1): 64-72, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-32539412

RESUMO

Thermal denaturation of holomyoglobin (hMb) in solution (10 mM ammonium acetate at pH = 4.5, 6.8, and 9.0) was monitored by ion mobility spectrometry (IMS) and mass spectrometry (MS) techniques to characterize the stability and investigate structural changes involved in unfolding. We utilize two experimental approaches to induce thermal denaturation: a variable-temperature electrospray ionization (vT-ESI) source that heats the bulk solution in the ESI emitter, and a variable-power 10.6 µm CO2 laser that rapidly heats nanodroplets produced by ESI. These two approaches sample different time scales of the denaturation process; long time scales (seconds to minutes) where the system is at equilibrium using the vT-ESI approach and shorter time scales (µs) by rapid droplet heating in which the system is in a pre-equilibrium state. Increasing the solution temperature (from 28 to 95 °C in the vT-ESI experiments) shifts the charge state distribution from low charge states ([M + 7H]7+ to [M + 9H]9+) to more highly charged species. This is accompanied by loss of the heme group to yield the apomyoglobin (aMb) species, indicating that the protein has unfolded. Monitoring the formation of aMb and the shift in average charge states of aMb and hMb with solution temperature allows for relative quantitation of their individual stabilities, highlighting the stabilizing effects of heme binding. We compare the degree of unfolding induced by heating the bulk solution (using vT-ESI) to the laser droplet heating approach and find that the rapid nature of the laser heating approach allows for transient pre-equilibrium states to be sampled.

6.
Biochimie ; 170: 36-48, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31857120

RESUMO

The proximity of cerebrospinal fluid (CSF) with the brain, its permanent renewal and better availability for research than tissue biopsies, as well as ganglioside (GG) shedding from brain to CSF, impelled lately the development of protocols for the characterization of these glycoconjugates and discovery of central nervous system biomarkers expressed in CSF. Currently, the investigation of CSF gangliosides is focused on concentration measurements of the predominant classes and much less on their profiling and structural analysis. Since we have demonstrated recently the high performance of ion mobility separation mass spectrometry (IMS MS) for compositional and structural determination of human brain GGs, in the present study we have implemented for the first time IMS MS for the exploration of human CSF gangliosidome, in order to generate the first robust mass spectral database of CSF gangliosides. IMS MS separation and screening revealed 113 distinct GG species in CSF, having similar compositions to the species detected in human brain. In comparison with the brain tissue, we have discovered in CSF several components containing fatty acids with odd number of carbon atoms and/or short glycan chains. By tandem MS (MS/MS) we have further analyzed the structure of GD3(d18:1/18:0) and GD2(d18:1/18:0), two glycoforms exhibiting short carbohydrate chains found in CSF, but discovered and characterized previously in brain as well. According to the present results, human CSF and brain show a similar ganglioside pattern, a finding that might be useful in clinical research focused on discovery of ganglioside species associated to neurodegenerative diseases and brain tumors.


Assuntos
Biomarcadores/líquido cefalorraquidiano , Encefalopatias/diagnóstico , Encéfalo/metabolismo , Gangliosídeos/líquido cefalorraquidiano , Espectrometria de Massas por Ionização por Electrospray/métodos , Adulto , Encefalopatias/líquido cefalorraquidiano , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA