Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell ; 184(14): 3674-3688.e18, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34166616

RESUMO

PspA is the main effector of the phage shock protein (Psp) system and preserves the bacterial inner membrane integrity and function. Here, we present the 3.6 Å resolution cryoelectron microscopy (cryo-EM) structure of PspA assembled in helical rods. PspA monomers adopt a canonical ESCRT-III fold in an extended open conformation. PspA rods are capable of enclosing lipids and generating positive membrane curvature. Using cryo-EM, we visualized how PspA remodels membrane vesicles into µm-sized structures and how it mediates the formation of internalized vesicular structures. Hotspots of these activities are zones derived from PspA assemblies, serving as lipid transfer platforms and linking previously separated lipid structures. These membrane fusion and fission activities are in line with the described functional properties of bacterial PspA/IM30/LiaH proteins. Our structural and functional analyses reveal that bacterial PspA belongs to the evolutionary ancestry of ESCRT-III proteins involved in membrane remodeling.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Choque Térmico/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Microscopia Crioeletrônica , Endocitose , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Escherichia coli/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/ultraestrutura , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Domínios Proteicos , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Lipossomas Unilamelares/metabolismo
2.
Biochim Biophys Acta Bioenerg ; 1858(2): 126-136, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27836697

RESUMO

IM30/Vipp1 proteins are crucial for thylakoid membrane biogenesis in chloroplasts and cyanobacteria. A characteristic C-terminal extension distinguishes these proteins from the homologous bacterial PspA proteins, and this extension has been discussed to be key for the IM30/Vipp1 activity. Here we report that the extension of the Synechocystis IM30 protein is indispensable, and argue that both, the N-terminal PspA-domain as well as the C-terminal extension are needed in order for the IM30 protein to conduct its in vivo function. In vitro, we show that the PspA-domain of IM30 is vital for stability/folding and oligomer formation of IM30 as well as for IM30-triggered membrane fusion. In contrast, the IM30 C-terminal domain is involved in and necessary to stabilize defined contacts to negatively charged membrane surfaces, and to modulate the IM30-induced membrane fusion activity. Although the two IM30 protein domains have distinct functional roles, only together they enable IM30 to work properly.


Assuntos
Proteínas de Bactérias/metabolismo , Bicamadas Lipídicas/metabolismo , Fusão de Membrana/fisiologia , Proteínas de Membrana/metabolismo , Membranas/metabolismo , Tilacoides/metabolismo , Cloroplastos/metabolismo , Ligação Proteica/fisiologia , Domínios Proteicos , Synechocystis/metabolismo
3.
J Biol Chem ; 291(29): 14954-62, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27226585

RESUMO

The IM30 (inner membrane-associated protein of 30 kDa), also known as the Vipp1 (vesicle-inducing protein in plastids 1), has a crucial role in thylakoid membrane biogenesis and maintenance. Recent results suggest that the protein binds peripherally to membranes containing negatively charged lipids. However, although IM30 monomers interact and assemble into large oligomeric ring complexes with different numbers of monomers, it is still an open question whether ring formation is crucial for membrane interaction. Here we show that binding of IM30 rings to negatively charged phosphatidylglycerol membrane surfaces results in a higher ordered membrane state, both in the head group and in the inner core region of the lipid bilayer. Furthermore, by using gold nanorods covered with phosphatidylglycerol layers and single particle spectroscopy, we show that not only IM30 rings but also lower oligomeric IM30 structures interact with membranes, although with higher affinity. Thus, ring formation is not crucial for, and even counteracts, membrane interaction of IM30.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Bactérias/genética , Cloroplastos/metabolismo , Cinética , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fosfatidilgliceróis/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Ressonância de Plasmônio de Superfície , Synechocystis/genética , Synechocystis/metabolismo , Tilacoides/metabolismo
4.
Nucleic Acids Res ; 40(7): 3259-74, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22156373

RESUMO

Eukaryotic ribosome biogenesis requires the concerted action of numerous ribosome assembly factors, for most of which structural and functional information is currently lacking. Nob1, which can be identified in eukaryotes and archaea, is required for the final maturation of the small subunit ribosomal RNA in yeast by catalyzing cleavage at site D after export of the preribosomal subunit into the cytoplasm. Here, we show that this also holds true for Nob1 from the archaeon Pyrococcus horikoshii, which efficiently cleaves RNA-substrates containing the D-site of the preribosomal RNA in a manganese-dependent manner. The structure of PhNob1 solved by nuclear magnetic resonance spectroscopy revealed a PIN domain common with many nucleases and a zinc ribbon domain, which are structurally connected by a flexible linker. We show that amino acid residues required for substrate binding reside in the PIN domain whereas the zinc ribbon domain alone is sufficient to bind helix 40 of the small subunit rRNA. This suggests that the zinc ribbon domain acts as an anchor point for the protein on the nascent subunit positioning it in the proximity of the cleavage site.


Assuntos
Proteínas Arqueais/química , Endorribonucleases/química , Sequência de Aminoácidos , Proteínas Arqueais/metabolismo , Domínio Catalítico , Endorribonucleases/metabolismo , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Estrutura Terciária de Proteína , Pyrococcus horikoshii/enzimologia , RNA/metabolismo , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Homologia de Sequência de Aminoácidos , Zinco/metabolismo
5.
J Exp Bot ; 63(4): 1699-712, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22131161

RESUMO

As a key feature in oxygenic photosynthesis, thylakoid membranes play an essential role in the physiology of plants, algae, and cyanobacteria. Despite their importance in the process of oxygenic photosynthesis, their biogenesis has remained a mystery to the present day. A decade ago, vesicle-inducing protein in plastids 1 (Vipp1) was described to be involved in thylakoid membrane formation in chloroplasts and cyanobacteria. Most follow-up studies clearly linked Vipp1 to membranes and Vipp1 interactions as well as the defects observed after Vipp1 depletion in chloroplasts and cyanobacteria indicate that Vipp1 directly binds to membranes, locally stabilizes bilayer structures, and thereby retains membrane integrity. Here current knowledge about the structure and function of Vipp1 is summarized with a special focus on its relationship to the bacterial phage shock protein A (PspA), as both proteins share a common origin and appear to have retained many similarities in structure and function.


Assuntos
Cloroplastos/metabolismo , Cianobactérias/metabolismo , Plastídeos/metabolismo , Tilacoides/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico , Cianobactérias/crescimento & desenvolvimento , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais
6.
Structure ; 25(9): 1380-1390.e5, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28803692

RESUMO

Biogenesis and dynamics of thylakoid membranes likely involves membrane fusion events. Membrane attachment of the inner membrane-associated protein of 30 kDa (IM30) affects the structure of the lipid bilayer, finally resulting in membrane fusion. Yet, how IM30 triggers membrane fusion is largely unclear. IM30 monomers pre-assemble into stable tetrameric building blocks, which further align to form oligomeric ring structures, and differently sized IM30 rings bind to membranes. Based on a 3D reconstruction of IM30 rings, we locate the IM30 loop 2 region at the bottom of the ring and show intact membrane binding but missing fusogenic activity of loop 2 mutants. However, helix 7, which has recently been shown to mediate membrane binding, was located at the oppossite, top side of IM30 rings. We propose that a two-sided IM30 ring complex connects two opposing membranes, finally resulting in membrane fusion. Thus, IM30-mediated membrane fusion requires a Janus-faced IM30 ring.


Assuntos
Proteínas de Cloroplastos/química , Proteínas de Cloroplastos/metabolismo , Tilacoides/ultraestrutura , Lipossomos/metabolismo , Fusão de Membrana , Modelos Moleculares , Ligação Proteica , Multimerização Proteica
7.
Nat Commun ; 6: 7018, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25952141

RESUMO

The thylakoid membrane of chloroplasts and cyanobacteria is a unique internal membrane system harbouring the complexes of the photosynthetic electron transfer chain. Despite their apparent importance, little is known about the biogenesis and maintenance of thylakoid membranes. Although membrane fusion events are essential for the formation of thylakoid membranes, proteins involved in membrane fusion have yet to be identified in photosynthetic cells or organelles. Here we show that IM30, a conserved chloroplast and cyanobacterial protein of approximately 30 kDa binds as an oligomeric ring in a well-defined geometry specifically to membranes containing anionic lipids. Triggered by Mg(2+), membrane binding causes destabilization and eventually results in membrane fusion. We propose that IM30 establishes contacts between internal membrane sites and promotes fusion to enable regulated exchange of proteins and/or lipids in cyanobacteria and chloroplasts.


Assuntos
Proteínas de Bactérias/metabolismo , Cloroplastos/metabolismo , Fusão de Membrana , Synechocystis/metabolismo , Proteínas de Bactérias/ultraestrutura , Centrifugação com Gradiente de Concentração , Galactolipídeos/metabolismo , Glicolipídeos/metabolismo , Lipossomos/metabolismo , Fosfatidilgliceróis/metabolismo , Ligação Proteica , Tilacoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA