Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(22): 8740-5, 2012 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-22592800

RESUMO

Alzheimer's disease (AD) is characterized by a progressive dysfunction of central neurons. Recent experimental evidence indicates that in the cortex, in addition to the silencing of a fraction of neurons, other neurons are hyperactive in amyloid-ß (Aß) plaque-enriched regions. However, it has remained unknown what comes first, neuronal silencing or hyperactivity, and what mechanisms might underlie the primary neuronal dysfunction. Here we examine the activity patterns of hippocampal CA1 neurons in a mouse model of AD in vivo using two-photon Ca(2+) imaging. We found that neuronal activity in the plaque-bearing CA1 region of older mice is profoundly altered. There was a marked increase in the fractions of both silent and hyperactive neurons, as previously also found in the cortex. Remarkably, in the hippocampus of young mice, we observed a selective increase in hyperactive neurons already before the formation of plaques, suggesting that soluble species of Aß may underlie this impairment. Indeed, we found that acute treatment with the γ-secretase inhibitor LY-411575 reduces soluble Aß levels and rescues the neuronal dysfunction. Furthermore, we demonstrate that direct application of soluble Aß can induce neuronal hyperactivity in wild-type mice. Thus, our study identifies hippocampal hyperactivity as a very early functional impairment in AD transgenic mice and provides direct evidence that soluble Aß is crucial for hippocampal hyperactivity.


Assuntos
Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/fisiologia , Modelos Animais de Doenças , Hipocampo/fisiopatologia , Fatores Etários , Alanina/análogos & derivados , Alanina/farmacologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Animais , Azepinas/farmacologia , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Região CA1 Hipocampal/fisiopatologia , Cálcio/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia
2.
Proc Natl Acad Sci U S A ; 107(27): 12323-8, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20566869

RESUMO

The large-conductance voltage- and calcium-activated potassium (BK) channels are ubiquitously expressed in the brain and play an important role in the regulation of neuronal excitation. Previous work has shown that the total deletion of these channels causes an impaired motor behavior, consistent with a cerebellar dysfunction. Cellular analyses showed that a decrease in spike firing rate occurred in at least two types of cerebellar neurons, namely in Purkinje neurons (PNs) and in Golgi cells. To determine the relative role of PNs, we developed a cell-selective mouse mutant, which lacked functional BK channels exclusively in PNs. The behavioral analysis of these mice revealed clear symptoms of ataxia, indicating that the BK channels of PNs are of major importance for normal motor coordination. By using combined two-photon imaging and patch-clamp recordings in these mutant mice, we observed a unique type of synaptic dysfunction in vivo, namely a severe silencing of the climbing fiber-evoked complex spike activity. By performing targeted pharmacological manipulations combined with simultaneous patch-clamp recordings in PNs, we obtained direct evidence that this silencing of climbing fiber activity is due to a malfunction of the tripartite olivo-cerebellar feedback loop, consisting of the inhibitory synaptic connection of PNs to the deep cerebellar nuclei (DCN), followed by a projection of inhibitory DCN afferents to the inferior olive, the origin of climbing fibers. Taken together, our results establish an essential role of BK channels of PNs for both cerebellar motor coordination and feedback regulation in the olivo-cerebellar loop.


Assuntos
Potenciais de Ação/fisiologia , Cerebelo/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Células de Purkinje/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Núcleos Cerebelares/citologia , Núcleos Cerebelares/metabolismo , Núcleos Cerebelares/fisiologia , Cerebelo/citologia , Cerebelo/metabolismo , Imuno-Histoquímica , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Camundongos , Camundongos Knockout , Atividade Motora/fisiologia , Muscimol/farmacologia , Compostos Orgânicos/farmacologia , Técnicas de Patch-Clamp , Células de Purkinje/metabolismo , Piridazinas/farmacologia
3.
Nat Commun ; 3: 774, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22491322

RESUMO

The accumulation of amyloid-ß in the brain is an essential feature of Alzheimer's disease. However, the impact of amyloid-ß-accumulation on neuronal dysfunction on the single cell level in vivo is poorly understood. Here we investigate the progression of amyloid-ß load in relation to neuronal dysfunction in the visual system of the APP23×PS45 mouse model of Alzheimer's disease. Using in vivo two-photon calcium imaging in the visual cortex, we demonstrate that a progressive deterioration of neuronal tuning for the orientation of visual stimuli occurs in parallel with the age-dependent increase of the amyloid-ß load. Importantly, we find this deterioration only in neurons that are hyperactive during spontaneous activity. This impairment of visual cortical circuit function also correlates with pronounced deficits in visual-pattern discrimination. Together, our results identify distinct stages of decline in sensory cortical performance in vivo as a function of the increased amyloid-ß-load.


Assuntos
Doença de Alzheimer/fisiopatologia , Neurônios/fisiologia , Fatores Etários , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos
4.
Artigo em Inglês | MEDLINE | ID: mdl-21441586

RESUMO

Metabotropic glutamate receptors type 1 (mGluR1s) are required for a normal function of the mammalian brain. They are particularly important for synaptic signaling and plasticity in the cerebellum. Unlike ionotropic glutamate receptors that mediate rapid synaptic transmission, mGluR1s produce in cerebellar Purkinje cells a complex postsynaptic response consisting of two distinct signal components, namely a local dendritic calcium signal and a slow excitatory postsynaptic potential. The basic mechanisms underlying these synaptic responses were clarified in recent years. First, the work of several groups established that the dendritic calcium signal results from IP(3) receptor-mediated calcium release from internal stores. Second, it was recently found that mGluR1-mediated slow excitatory postsynaptic potentials are mediated by the transient receptor potential channel TRPC3. This surprising finding established TRPC3 as a novel postsynaptic channel for glutamatergic synaptic transmission.


Assuntos
Sinalização do Cálcio/fisiologia , Neurônios/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Transmissão Sináptica/fisiologia , Animais , Potenciais da Membrana , Neurônios/citologia , Receptores de Glutamato Metabotrópico/genética
5.
Neuron ; 59(3): 392-8, 2008 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-18701065

RESUMO

In the mammalian central nervous system, slow synaptic excitation involves the activation of metabotropic glutamate receptors (mGluRs). It has been proposed that C1-type transient receptor potential (TRPC1) channels underlie this synaptic excitation, but our analysis of TRPC1-deficient mice does not support this hypothesis. Here, we show unambiguously that it is TRPC3 that is needed for mGluR-dependent synaptic signaling in mouse cerebellar Purkinje cells. TRPC3 is the most abundantly expressed TRPC subunit in Purkinje cells. In mutant mice lacking TRPC3, both slow synaptic potentials and mGluR-mediated inward currents are completely absent, while the synaptically mediated Ca2+ release signals from intracellular stores are unchanged. Importantly, TRPC3 knockout mice exhibit an impaired walking behavior. Taken together, our results establish TRPC3 as a new type of postsynaptic channel that mediates mGluR-dependent synaptic transmission in cerebellar Purkinje cells and is crucial for motor coordination.


Assuntos
Desempenho Psicomotor/fisiologia , Transmissão Sináptica/fisiologia , Canais de Cátion TRPC/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Comportamento Animal/fisiologia , Cálcio/metabolismo , Cerebelo/citologia , Estimulação Elétrica/métodos , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Técnicas In Vitro , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Vias Neurais/fisiologia , Vias Neurais/efeitos da radiação , Técnicas de Patch-Clamp/métodos , Desempenho Psicomotor/efeitos dos fármacos , Células de Purkinje/fisiologia , Canais de Cátion TRPC/deficiência , Canais de Cátion TRPC/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA