Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Metabolomics ; 19(9): 81, 2023 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-37690105

RESUMO

Air pollutant exposures have been linked to systemic disease; however, the underlying mechanisms between responses of the target tissue and systemic effects are poorly understood. A prototypic inducer of stress, ozone causes respiratory and systemic multiorgan effects through activation of a neuroendocrine stress response. The goal of this study was to assess transcriptomic signatures of multiple tissues and serum metabolomics to understand how neuroendocrine and adrenal-derived stress hormones contribute to multiorgan health outcomes. Male Wistar Kyoto rats (12-13 weeks old) were exposed to filtered air or 0.8 ppm ozone for 4-hours, and blood/tissues were collected immediately post-exposure. Each tissue had distinct expression profiles at baseline. Ozone changed 1,640 genes in lung, 274 in hypothalamus, 2,516 in adrenals, 1,333 in liver, 1,242 in adipose, and 5,102 in muscle (adjusted p-value < 0.1, absolute fold-change > 50%). Serum metabolomic analysis identified 863 metabolites, of which 447 were significantly altered in ozone-exposed rats (adjusted p-value < 0.1, absolute fold change > 20%). A total of 6 genes were differentially expressed in all 6 tissues. Glucocorticoid signaling, hypoxia, and GPCR signaling were commonly changed, but ozone induced tissue-specific changes in oxidative stress, immune processes, and metabolic pathways. Genes upregulated by TNF-mediated NFkB signaling were differentially expressed in all ozone-exposed tissues, but those defining inflammatory response were tissue-specific. Upstream predictor analysis identified common mediators of effects including glucocorticoids, although the specific genes responsible for these predictors varied by tissue. Metabolomic analysis showed major changes in lipids, amino acids, and metabolites linked to the gut microbiome, concordant with transcriptional changes identified through pathway analysis within liver, muscle, and adipose tissues. The distribution of receptors and transcriptional mechanisms underlying the ozone-induced stress response are tissue-specific and involve induction of unique gene networks and metabolic phenotypes, but the shared initiating triggers converge into shared pathway-level responses. This multi-tissue transcriptomic analysis, combined with circulating metabolomic assessment, allows characterization of the systemic inhaled pollutant-induced stress response.


Assuntos
Metabolômica , Transcriptoma , Masculino , Ratos , Animais , Ratos Endogâmicos WKY , Perfilação da Expressão Gênica , Músculos
2.
Inhal Toxicol ; 35(3-4): 109-126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36749208

RESUMO

Air pollutants are being increasingly linked to extrapulmonary multi-organ effects. Specifically, recent studies associate air pollutants with brain disorders including psychiatric conditions, neuroinflammation and chronic diseases. Current evidence of the linkages between neuropsychiatric conditions and chronic peripheral immune and metabolic diseases provides insights on the potential role of the neuroendocrine system in mediating neural and systemic effects of inhaled pollutants (reactive particulates and gases). Autonomically-driven stress responses, involving sympathetic-adrenal-medullary and hypothalamus-pituitary-adrenal axes regulate cellular physiological processes through adrenal-derived hormones and diverse receptor systems. Recent experimental evidence demonstrates the contribution of the very stress system responding to non-chemical stressors, in mediating systemic and neural effects of reactive air pollutants. The assessment of how respiratory encounter of air pollutants induce lung and peripheral responses through brain and neuroendocrine system, and how the impairment of these stress pathways could be linked to chronic diseases will improve understanding of the causes of individual variations in susceptibility and the contribution of habituation/learning and resiliency. This review highlights effects of air pollution in the respiratory tract that impact the brain and neuroendocrine system, including the role of autonomic sensory nervous system in triggering neural stress response, the likely contribution of translocated nano particles or metal components, and biological mediators released systemically in causing effects remote to the respiratory tract. The perspective on the use of systems approaches that incorporate multiple chemical and non-chemical stressors, including environmental, physiological and psychosocial, with the assessment of interactive neural mechanisms and peripheral networks are emphasized.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/toxicidade , Sistemas Neurossecretores/metabolismo , Poluição do Ar/efeitos adversos , Encéfalo , Pulmão
3.
Inhal Toxicol ; 35(3-4): 59-75, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35867597

RESUMO

OBJECTIVE: Inhalation of ozone activates central sympathetic-adrenal-medullary and hypothalamic-pituitary-adrenal stress axes. While airway neural networks are known to communicate noxious stimuli to higher brain centers, it is not known to what extent responses generated from pulmonary airways contribute to neuroendocrine activation. MATERIALS AND METHODS: Unlike inhalational exposures that involve the entire respiratory tract, we employed intratracheal (IT) instillations to expose only pulmonary airways to either soluble metal-rich residual oil fly ash (ROFA) or compressor-generated diesel exhaust particles (C-DEP). Male Wistar-Kyoto rats (12-13 weeks) were IT instilled with either saline, C-DEP or ROFA (5 mg/kg) and necropsied at 4 or 24 hr to assess temporal effects. RESULTS: IT-instillation of particulate matter (PM) induced hyperglycemia as early as 30-min and glucose intolerance when measured at 2 hr post-exposure. We observed PM- and time-specific effects on markers of pulmonary injury/inflammation (ROFA>C-DEP; 24 hr>4hr) as corroborated by increases in lavage fluid injury markers, neutrophils (ROFA>C-DEP), and lymphocytes (ROFA). Increases in lavage fluid pro-inflammatory cytokines differed between C-DEP and ROFA in that C-DEP caused larger increases in TNF-α whereas ROFA caused larger increases in IL-6. No increases in circulating cytokines occurred. At 4 hr, PM impacts on neuroendocrine activation were observed through depletion of circulating leukocytes, increases in adrenaline (ROFA), and decreases in thyroid-stimulating-hormone, T3, prolactin, luteinizing-hormone, and testosterone. C-DEP and ROFA both increased lung expression of genes involved in acute stress and inflammatory processes. Moreover, small increases occurred in hypothalamic Fkbp5, a glucocorticoid-sensitive gene. CONCLUSION: Respiratory alterations differed between C-DEP and ROFA, with ROFA inducing greater overall lung injury/inflammation; however, both PM induced a similar degree of neuroendocrine activation. These findings demonstrate neuroendocrine activation after pulmonary-only PM exposure, and suggest the involvement of pituitary- and adrenal-derived hormones.


Assuntos
Poluentes Atmosféricos , Lesão Pulmonar , Ratos , Animais , Masculino , Material Particulado/toxicidade , Material Particulado/metabolismo , Poluentes Atmosféricos/toxicidade , Líquido da Lavagem Broncoalveolar , Ratos Sprague-Dawley , Ratos Endogâmicos WKY , Pulmão , Cinza de Carvão , Lesão Pulmonar/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Hormônios/metabolismo , Hormônios/farmacologia
4.
Toxicol Appl Pharmacol ; 447: 116085, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35618032

RESUMO

Ozone-induced lung injury/inflammation dissipates despite continued exposure for 3 or more days; however, the mechanisms of adaptation/habituation remain unclear. Since ozone effects are mediated through adrenal-derived stress hormones, which also regulate longevity of centrally-mediated stress response, we hypothesized that ozone-adaptation is linked to diminution of neuroendocrine stress-axes activation and glucocorticoid levels. Male Wistar-Kyoto-rats (12-week-old) were injected with vehicle or a therapeutically-relevant dexamethasone dose (0.01-mg/kg/day; intraperitoneal) for 1-month to determine if suppression of glucocorticoid signaling was linked to adaptation. Vehicle- and dexamethasone-treated rats were exposed to air or 0.8-ppm ozone, 4 h/day × 2 or 4 days to assess the impacts of acute exposure and adaptation, respectively. Dexamethasone reduced thymus and spleen weights, circulating lymphocytes, corticosterone and increased insulin. Ozone increased lavage-fluid protein and neutrophils and decreased circulating lymphocytes at day-2 but not day-4. Ozone-induced hyperglycemia, glucose intolerance and inhibition of beta-cell insulin release occurred at day-1 but not day-3. Ozone depleted circulating prolactin, thyroid-stimulating hormone, and luteinizing-hormone at day-2 but not day-4, suggesting central mediation of adaptation. Adrenal epinephrine biosynthesis gene, Pnmt, was up-regulated after ozone exposure at both timepoints. However, genes involved in glucocorticoid biosynthesis were up-regulated after day-2 but not day-4, suggesting that acute 1- or 2-day ozone-mediated glucocorticoid increase elicits feedback inhibition to dampen hypothalamic stimulation of ACTH release in response to repeated subsequent ozone exposures. Although dexamethasone pretreatment affected circulating insulin, lymphocytes and adrenal genes, it had modest effect on ozone adaptation. In conclusion, ozone adaptation likely involves lack of hypothalamic response due to reduced availability of circulating glucocorticoids.


Assuntos
Ozônio , Pneumonia , Animais , Corticosterona , Dexametasona/toxicidade , Glucocorticoides/toxicidade , Inflamação , Insulina/metabolismo , Masculino , Sistemas Neurossecretores , Ozônio/toxicidade , Pneumonia/induzido quimicamente , Ratos , Ratos Endogâmicos WKY
5.
Toxicol Appl Pharmacol ; 457: 116295, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36341779

RESUMO

Psychosocially-stressed individuals might have exacerbated responses to air pollution exposure. Acute ozone exposure activates the neuroendocrine stress response leading to systemic metabolic and lung inflammatory changes. We hypothesized chronic mild stress (CS) and/or social isolation (SI) would cause neuroendocrine, inflammatory, and metabolic phenotypes that would be exacerbated by an acute ozone exposure. Male 5-week-old Wistar-Kyoto rats were randomly assigned into 3 groups: no stress (NS) (pair-housed, regular-handling); SI (single-housed, minimal-handling); CS (single-housed, subjected to mild unpredicted-randomized stressors [restraint-1 h, tilted cage-1 h, shaking-1 h, intermittent noise-6 h, and predator odor-1 h], 1-stressor/day*5-days/week*8-weeks. All animals then 13-week-old were subsequently exposed to filtered-air or ozone (0.8-ppm) for 4 h and immediately necropsied. CS, but not SI animals had increased adrenal weights. However, relative to NS, both CS and SI had lower circulating luteinizing hormone, prolactin, and follicle-stimulating hormone regardless of exposure (SI > CS), and only CS demonstrated lower thyroid-stimulating hormone levels. SI caused more severe systemic inflammation than CS, as evidenced by higher circulating cytokines and cholesterol. Ozone exposure increased urine corticosterone and catecholamine metabolites with no significant stressor effect. Ozone-induced lung injury, and increases in lavage-fluid neutrophils and IL-6, were exacerbated by SI. Ozone severely lowered circulating thyroid-stimulating hormone, prolactin, and luteinizing hormone in all groups and exacerbated systemic inflammation in SI. Ozone-induced increases in serum glucose, leptin, and triglycerides were consistent across stressors; however, increases in cholesterol were exacerbated by SI. Collectively, psychosocial stressors, especially SI, affected the neuroendocrine system and induced adverse metabolic and inflammatory effects that were exacerbated by ozone exposure.

6.
Toxicol Appl Pharmacol ; 415: 115430, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33524446

RESUMO

Air pollutants may increase risk for cardiopulmonary disease, particularly in susceptible populations with metabolic stressors such as diabetes and unhealthy diet. We investigated effects of inhaled ozone exposure and high-cholesterol diet (HCD) in healthy Wistar and Wistar-derived Goto-Kakizaki (GK) rats, a non-obese model of type 2 diabetes. Male rats (4-week old) were fed normal diet (ND) or HCD for 12 weeks and then exposed to filtered air or 1.0 ppm ozone (6 h/day) for 1 or 2 days. We examined pulmonary, vascular, hematology, and inflammatory responses after each exposure plus an 18-h recovery period. In both strains, ozone induced acute bronchiolar epithelial necrosis and inflammation on histopathology and pulmonary protein leakage and neutrophilia; the protein leakage was more rapid and persistent in GK compared to Wistar rats. Ozone also decreased lymphocytes after day 1 in both strains consuming ND (~50%), while HCD increased circulating leukocytes. Ozone increased plasma thrombin/antithrombin complexes and platelet disaggregation in Wistar rats on HCD and exacerbated diet effects on serum IFN-γ, IL-6, KC-GRO, IL-13, and TNF-α, which were higher with HCD (Wistar>GK). Ex vivo aortic contractility to phenylephrine was lower in GK versus Wistar rats at baseline(~30%); ozone enhanced this effect in Wistar rats on ND. GK rats on HCD had higher aortic e-NOS and tPA expression compared to Wistar rats. Ozone increased e-NOS in GK rats on ND (~3-fold) and Wistar rats on HCD (~2-fold). These findings demonstrate ways in which underlying diabetes and HCD may exacerbate pulmonary, systemic, and vascular effects of inhaled pollutants.


Assuntos
Poluentes Atmosféricos/toxicidade , Aorta Torácica/efeitos dos fármacos , Colesterol na Dieta/toxicidade , Diabetes Mellitus Tipo 2/complicações , Dieta Aterogênica/efeitos adversos , Lesão Pulmonar/induzido quimicamente , Pulmão/efeitos dos fármacos , Ozônio/toxicidade , Doenças Vasculares/induzido quimicamente , Animais , Aorta Torácica/metabolismo , Aorta Torácica/fisiopatologia , Biomarcadores/sangue , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Colesterol na Dieta/metabolismo , Citocinas/sangue , Diabetes Mellitus Tipo 2/sangue , Modelos Animais de Doenças , Mediadores da Inflamação/sangue , Exposição por Inalação , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/sangue , Lesão Pulmonar/patologia , Masculino , Necrose , Edema Pulmonar/sangue , Edema Pulmonar/induzido quimicamente , Edema Pulmonar/patologia , Ratos Wistar , Doenças Vasculares/sangue , Doenças Vasculares/fisiopatologia , Vasoconstrição/efeitos dos fármacos
7.
Toxicol Appl Pharmacol ; 415: 115427, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33524448

RESUMO

Epidemiological studies show that individuals with underlying diabetes and diet-associated ailments are more susceptible than healthy individuals to adverse health effects of air pollution. Exposure to air pollutants can induce metabolic stress and increase cardiometabolic disease risk. Using male Wistar and Wistar-derived Goto-Kakizaki (GK) rats, which exhibit a non-obese type-2 diabetes phenotype, we investigated whether two key metabolic stressors, type-2 diabetes and a high-cholesterol atherogenic diet, exacerbate ozone-induced metabolic effects. Rats were fed a normal control diet (ND) or high-cholesterol diet (HCD) for 12 weeks and then exposed to filtered air or 1.0-ppm ozone (6 h/day) for 1 or 2 days. Metabolic responses were analyzed at the end of each day and after an 18-h recovery period following the 2-day exposure. In GK rats, baseline hyperglycemia and glucose intolerance were exacerbated by HCD vs. ND and by ozone vs. air. HCD also resulted in higher insulin in ozone-exposed GK rats and circulating lipase, aspartate transaminase, and alanine transaminase in all groups (Wistar>GK). Histopathological effects induced by HCD in the liver, which included macrovesicular vacuolation and hepatocellular necrosis, were more severe in Wistar vs. GK rats. Liver gene expression in Wistar and GK rats fed ND showed numerous strain differences, including evidence of increased lipid metabolizing activity and ozone-induced alterations in glucose and lipid transporters, specifically in GK rats. Collectively, these findings indicate that peripheral metabolic alterations induced by diabetes and high-cholesterol diet can enhance susceptibility to the metabolic effects of inhaled pollutants.


Assuntos
Tecido Adiposo Branco/efeitos dos fármacos , Poluentes Atmosféricos/toxicidade , Colesterol na Dieta/toxicidade , Diabetes Mellitus Tipo 2/complicações , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Fígado/efeitos dos fármacos , Ozônio/toxicidade , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Composição Corporal/efeitos dos fármacos , Colesterol na Dieta/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Exposição por Inalação , Insulina/sangue , Lipídeos/sangue , Fígado/metabolismo , Fígado/patologia , Masculino , Ratos Wistar , Especificidade da Espécie
8.
Toxicol Appl Pharmacol ; 410: 115337, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33217375

RESUMO

Dietary factors may modulate metabolic effects of air pollutant exposures. We hypothesized that diets enriched with coconut oil (CO), fish oil (FO), or olive oil (OO) would alter ozone-induced metabolic responses. Male Wistar-Kyoto rats (1-month-old) were fed normal diet (ND), or CO-, FO-, or OO-enriched diets. After eight weeks, animals were exposed to air or 0.8 ppm ozone, 4 h/day for 2 days. Relative to ND, CO- and OO-enriched diet increased body fat, serum triglycerides, cholesterols, and leptin, while all supplements increased liver lipid staining (OO > FO > CO). FO increased n-3, OO increased n-6/n-9, and all supplements increased saturated fatty-acids. Ozone increased total cholesterol, low-density lipoprotein, branched-chain amino acids (BCAA), induced hyperglycemia, glucose intolerance, and changed gene expression involved in energy metabolism in adipose and muscle tissue in rats fed ND. Ozone-induced glucose intolerance was exacerbated by OO-enriched diet. Ozone increased leptin in CO- and FO-enriched groups; however, BCAA increases were blunted by FO and OO. Ozone-induced inhibition of liver cholesterol biosynthesis genes in ND-fed rats was not evident in enriched dietary groups; however, genes involved in energy metabolism and glucose transport were increased in rats fed FO and OO-enriched diet. FO- and OO-enriched diets blunted ozone-induced inhibition of genes involved in adipose tissue glucose uptake and cholesterol synthesis, but exacerbated genes involved in adipose lipolysis. Ozone-induced decreases in muscle energy metabolism genes were similar in all dietary groups. In conclusion, CO-, FO-, and OO-enriched diets modified ozone-induced metabolic changes in a diet-specific manner, which could contribute to altered peripheral energy homeostasis.


Assuntos
Óleo de Coco/metabolismo , Gorduras Insaturadas na Dieta/metabolismo , Óleos de Peixe/metabolismo , Azeite de Oliva/metabolismo , Ozônio/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Óleo de Coco/administração & dosagem , Gorduras Insaturadas na Dieta/administração & dosagem , Óleos de Peixe/administração & dosagem , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Azeite de Oliva/administração & dosagem , Ozônio/administração & dosagem , Ratos , Ratos Endogâmicos WKY
9.
J Toxicol Environ Health A ; 84(6): 235-248, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33317425

RESUMO

Acute-phase response (APR) is an innate stress reaction to tissue trauma or injury, infection, and environmental insults like ozone (O3). Regardless of the location of stress, the liver has been considered the primary contributor to circulating acute-phase proteins (APPs); however, the mechanisms underlying APR induction are unknown. Male Wistar-Kyoto rats were exposed to air or O3 (1 ppm, 6-hr/day, 1 or 2 days) and examined immediately after each exposure and after 18-hr recovery for APR proteins and gene expression. To assess the contribution of adrenal-derived stress hormones, lung and liver global gene expression data from sham and adrenalectomized rats exposed to air or O3 were compared for APR transcriptional changes. Data demonstrated serum protein alterations for selected circulating positive and negative APPs following 2 days of O3 exposure and during recovery. At baseline, APP gene expression was several folds higher in the liver relative to the lung. O3-induced increases were significant for lung but not liver for some genes including orosomucoid-1. Further, comparative assessment of mRNA seq data for known APPs in sham rats exhibited marked elevation in the lung but not liver, and a near-complete abolishment of APP mRNA levels in lung tissue of adrenalectomized rats. Thus, the lung appears to play a critical role in O3-induced APP synthesis and requires the presence of circulating adrenal-derived stress hormones. The relative contribution of lung versus liver and the role of neuroendocrine stress hormones need to be considered in future APR studies involving inhaled pollutants.


Assuntos
Proteínas de Fase Aguda/genética , Poluentes Atmosféricos/efeitos adversos , Expressão Gênica , Hormônios/metabolismo , Fígado/patologia , Pulmão/patologia , Ozônio/efeitos adversos , Proteínas de Fase Aguda/metabolismo , Reação de Fase Aguda/induzido quimicamente , Glândulas Suprarrenais/metabolismo , Animais , Masculino , Ratos , Ratos Endogâmicos WKY
10.
Inhal Toxicol ; 32(4): 155-169, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32366144

RESUMO

Background: The release of catecholamines is preceded by glucocorticoids during a stress response. We have shown that ozone-induced pulmonary responses are mediated through the activation of stress hormone receptors.Objective: To examine the interdependence of beta-adrenergic (ßAR) and glucocorticoid receptors (GRs), we inhibited ßAR while inducing GR or inhibited GR while inducing ßAR and examined ozone-induced stress response.Methods: Twelve-week-old male Wistar-Kyoto rats were pretreated daily with saline or propranolol (PROP; ßAR-antagonist; 10 mg/kg-i.p.; starting 7-d prior to exposure) followed-by saline or dexamethasone (DEX) sulfate (GR-agonist; 0.02 mg/kg-i.p.; starting 1-d prior to exposure) and exposed to air or 0.8 ppm ozone (4 h/d × 2-d). In a second experiment, rats were similarly pretreated with corn-oil or mifepristone (MIFE; GR-antagonist, 30 mg/kg-s.c.) followed by saline or clenbuterol (CLEN; ß2AR-agonist; 0.02 mg/kg-i.p.) and exposed.Results: DEX and PROP + DEX decreased adrenal, spleen and thymus weights in all rats. DEX and MIFE decreased and increased corticosterone, respectively. Ozone-induced pulmonary protein leakage, inflammation and IL-6 increases were inhibited by PROP or PROP + DEX and exacerbated by CLEN or CLEN + MIFE. DEX and ozone-induced while MIFE reversed lymphopenia (MIFE > CLEN + MIFE). DEX exacerbated while PROP, MIFE, or CLEN + MIFE inhibited ozone-induced hyperglycemia and glucose intolerance. Ozone inhibited glucose-mediated insulin release.Conclusions: In summary, 1) activating ßAR, even with GR inhibition, exacerbated and inhibiting ßAR, even with GR activation, attenuated ozone-induced pulmonary effects; and 2) activating GR exacerbated ozone systemic effects, but with ßAR inhibition, this exacerbation was less remarkable. These data suggest the independent roles of ßAR in pulmonary and dependent roles of ßAR and GR in systemic effects of ozone.


Assuntos
Poluentes Atmosféricos/toxicidade , Pulmão/efeitos dos fármacos , Ozônio/toxicidade , Receptores Adrenérgicos beta/metabolismo , Receptores de Glucocorticoides/metabolismo , Antagonistas Adrenérgicos beta/farmacologia , Animais , Corticosterona/sangue , Dexametasona/farmacologia , Epinefrina/sangue , Glucocorticoides/farmacologia , Hiperglicemia/induzido quimicamente , Insulina/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Linfopenia/induzido quimicamente , Masculino , Mifepristona/farmacologia , Propranolol/farmacologia , Ratos Endogâmicos WKY , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/antagonistas & inibidores
11.
Environ Res ; 177: 108661, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31442789

RESUMO

BACKGROUND: Ethanol vehicles release exhaust gases that contribute to the formation of secondary organic aerosols (SOA). OBJECTIVE: To determine in vivo toxicity resulting from exposure to SOA derived from vehicles using different ethanol-gasoline blends (E0, E10, E22, E85W, E85S, E100). METHODS: Exhaust emissions from vehicles using ethanol blends were delivered to a photochemical chamber and reacted to produce SOA. The aerosol samples were collected on filters, extracted, and dispersed in an aqueous solutions and intratracheally instilled into Sprague Dawley rats in doses of 700 µg/0.2 ml. After 45 min and 4 h pulmonary and cardiac chemiluminescence (CL) was measured to estimate the amount of reactive oxygen species (ROS) produced in the lungs and heart. Inflammation was measured by differential cell count in bronchoalveolar lavages (BAL). RESULTS: Statistically and biologically significant differences in response to secondary particles from the different fuel formulations were detected. Compared to the control group, animals exposed to SOA from gasoline (E0) showed a significantly higher average CL in the lungs at 45 min. The highest CL averages in the heart were observed in the groups exposed to SOA from E10 and pure ethanol (E100) at 45 min. BAL of animals exposed to SOA from E0 and E85S had a significant increased number of macrophages at 45 min. BAL neutrophil count was increased in the groups exposed to E85S (45 min) and E0 (4 h). Animals exposed to E0 and E85W had increased BAL lymphocyte count compared to the control and the other exposed groups. DISCUSSION: Our results suggest that SOA generated by gasoline (E0), followed by ethanol blends E85S and E85W, substantially induce oxidative stress measured by ROS generation and pulmonary inflammation measured by the recruitment of white blood cells in BAL.


Assuntos
Poluentes Atmosféricos/toxicidade , Pneumonia/induzido quimicamente , Espécies Reativas de Oxigênio/metabolismo , Emissões de Veículos/toxicidade , Animais , Etanol , Gasolina , Coração/efeitos dos fármacos , Contagem de Leucócitos , Pulmão/efeitos dos fármacos , Macrófagos/citologia , Neutrófilos/citologia , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley
12.
Endocr Pract ; 25(8): 817-823, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31013162

RESUMO

Objective: We previously developed a predictive model to assess the risk of developing acute pancreatitis (AP) in patients with severe hypertriglyceridemia (HTG). In this study, we aimed to externally validate this model. Methods: The validation cohort included cross-sectional data between 2013 and 2017. Adult patients (≥18 years old) with triglyceride levels ≥1,000 mg/dL were identified. Based on our previous 4-factor predictive model (age, triglyceride [TG], excessive alcohol use, and gallstone disease), we estimated the probability of developing AP. Model performance was assessed using area under receiver operating characteristic curve (AUROC). Results: In comparison to the original cohort, patients in the validation cohort had more prevalent acute pancreatitis (16.2% versus 9.2%; P<.001) and gallstone disease (7.5% versus 2.1%; P<.001). Other characteristics were comparable and not statistically significant. The AUROCs were almost identical: 0.8337 versus 0.8336 in the validation and the original cohorts, respectively. In univariable analyses, the highest increase in odds of AP was associated with HTG, followed by gallstones, excessive alcohol use, and younger age. Conclusion: This study externally validates the 4-factor predictive model to estimate the risk of AP in adult patients with severe HTG (TG ≥1,000 mg/dL). Younger age was confirmed to place patients at high risk of AP. The clinical risk categories suggested in this study may be useful to guide treatment options. Abbreviations: AP = acute pancreatitis; ASCVD = atherosclerotic cardiovascular disease; AUROC = area under the receiver operating characteristic curve; FRAX = fracture risk assessment tool; HTG = hypertriglyceridemia; OR = odds ratio; TG = triglyceride level.


Assuntos
Hipertrigliceridemia , Pancreatite , Doença Aguda , Estudos Transversais , Humanos , Fatores de Risco , Triglicerídeos
13.
Toxicol Appl Pharmacol ; 339: 161-171, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29247675

RESUMO

Recent studies showed that the circulating stress hormones, epinephrine and corticosterone/cortisol, are involved in mediating ozone-induced pulmonary effects through the activation of the sympathetic-adrenal-medullary (SAM) and hypothalamus-pituitary-adrenal (HPA) axes. Hence, we examined the role of adrenergic and glucocorticoid receptor inhibition in ozone-induced pulmonary injury and inflammation. Male 12-week old Wistar-Kyoto rats were pretreated daily for 7days with propranolol (PROP; a non-selective ß adrenergic receptor [AR] antagonist, 10mg/kg, i.p.), mifepristone (MIFE; a glucocorticoid receptor [GR] antagonist, 30mg/kg, s.c.), both drugs (PROP+MIFE), or respective vehicles, and then exposed to air or ozone (0.8ppm), 4h/d for 1 or 2 consecutive days while continuing drug treatment. Ozone exposure alone led to increased peak expiratory flow rates and enhanced pause (Penh); with greater increases by day 2. Receptors blockade minimally affected ventilation in either air- or ozone-exposed rats. Ozone exposure alone was also associated with marked increases in pulmonary vascular leakage, macrophage activation, neutrophilic inflammation and lymphopenia. Notably, PROP, MIFE and PROP+MIFE pretreatments significantly reduced ozone-induced pulmonary vascular leakage; whereas PROP or PROP+MIFE reduced neutrophilic inflammation. PROP also reduced ozone-induced increases in bronchoalveolar lavage fluid (BALF) IL-6 and TNF-α proteins and/or lung Il6 and Tnfα mRNA. MIFE and PROP+MIFE pretreatments reduced ozone-induced increases in BALF N-acetyl glucosaminidase activity, and lymphopenia. We conclude that stress hormones released after ozone exposure modulate pulmonary injury and inflammatory effects through AR and GR in a receptor-specific manner. Individuals with pulmonary diseases receiving AR and GR-related therapy might experience changed sensitivity to air pollution.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Antagonistas de Hormônios/farmacologia , Lesão Pulmonar/metabolismo , Ozônio/toxicidade , Receptores Adrenérgicos/metabolismo , Receptores de Glucocorticoides/metabolismo , Antagonistas Adrenérgicos beta/uso terapêutico , Animais , Líquido da Lavagem Broncoalveolar , Antagonistas de Hormônios/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Masculino , Mifepristona/farmacologia , Mifepristona/uso terapêutico , Ratos , Ratos Endogâmicos WKY , Receptores de Glucocorticoides/antagonistas & inibidores
14.
Toxicol Appl Pharmacol ; 329: 249-258, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28623178

RESUMO

Ozone-induced systemic effects are modulated through activation of the neuro-hormonal stress response pathway. Adrenal demedullation (DEMED) or bilateral total adrenalectomy (ADREX) inhibits systemic and pulmonary effects of acute ozone exposure. To understand the influence of adrenal-derived stress hormones in mediating ozone-induced lung injury/inflammation, we assessed global gene expression (mRNA sequencing) and selected proteins in lung tissues from male Wistar-Kyoto rats that underwent DEMED, ADREX, or sham surgery (SHAM) prior to their exposure to air or ozone (1ppm), 4h/day for 1 or 2days. Ozone exposure significantly changed the expression of over 2300 genes in lungs of SHAM rats, and these changes were markedly reduced in DEMED and ADREX rats. SHAM surgery but not DEMED or ADREX resulted in activation of multiple ozone-responsive pathways, including glucocorticoid, acute phase response, NRF2, and PI3K-AKT. Predicted targets from sequencing data showed a similarity between transcriptional changes induced by ozone and adrenergic and steroidal modulation of effects in SHAM but not ADREX rats. Ozone-induced increases in lung Il6 in SHAM rats coincided with neutrophilic inflammation, but were diminished in DEMED and ADREX rats. Although ozone exposure in SHAM rats did not significantly alter mRNA expression of Ifnγ and Il-4, the IL-4 protein and ratio of IL-4 to IFNγ (IL-4/IFNγ) proteins increased suggesting a tendency for a Th2 response. This did not occur in ADREX and DEMED rats. We demonstrate that ozone-induced lung injury and neutrophilic inflammation require the presence of circulating epinephrine and corticosterone, which transcriptionally regulates signaling mechanisms involved in this response.


Assuntos
Córtex Suprarrenal/metabolismo , Medula Suprarrenal/metabolismo , Corticosterona/sangue , Epinefrina/sangue , Lesão Pulmonar/induzido quimicamente , Pulmão/metabolismo , Ozônio , Pneumonia/induzido quimicamente , Estresse Fisiológico , Córtex Suprarrenal/cirurgia , Medula Suprarrenal/cirurgia , Adrenalectomia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Mediadores da Inflamação/metabolismo , Pulmão/patologia , Lesão Pulmonar/sangue , Lesão Pulmonar/genética , Lesão Pulmonar/prevenção & controle , Masculino , Neutrófilos/metabolismo , Estresse Oxidativo , Pneumonia/sangue , Pneumonia/genética , Pneumonia/patologia , Pneumonia/prevenção & controle , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Endogâmicos WKY , Transdução de Sinais , Estresse Fisiológico/genética , Transcrição Gênica
15.
Toxicol Appl Pharmacol ; 306: 47-57, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27368153

RESUMO

Acute ozone exposure induces a classical stress response with elevated circulating stress hormones along with changes in glucose, protein and lipid metabolism in rats, with similar alterations in ozone-exposed humans. These stress-mediated changes over time have been linked to insulin resistance. We hypothesized that acute ozone-induced stress response and metabolic impairment would persist during subchronic episodic exposure and induce peripheral insulin resistance. Male Wistar Kyoto rats were exposed to air or 0.25ppm or 1.00ppm ozone, 5h/day, 3 consecutive days/week (wk) for 13wks. Pulmonary, metabolic, insulin signaling and stress endpoints were determined immediately after 13wk or following a 1wk recovery period (13wk+1wk recovery). We show that episodic ozone exposure is associated with persistent pulmonary injury and inflammation, fasting hyperglycemia, glucose intolerance, as well as, elevated circulating adrenaline and cholesterol when measured at 13wk, however, these responses were largely reversible following a 1wk recovery. Moreover, the increases noted acutely after ozone exposure in non-esterified fatty acids and branched chain amino acid levels were not apparent following a subchronic exposure. Neither peripheral or tissue specific insulin resistance nor increased hepatic gluconeogenesis were present after subchronic ozone exposure. Instead, long-term ozone exposure lowered circulating insulin and severely impaired glucose-stimulated beta-cell insulin secretion. Thus, our findings in young-adult rats provide potential insights into epidemiological studies that show a positive association between ozone exposures and type 1 diabetes. Ozone-induced beta-cell dysfunction may secondarily contribute to other tissue-specific metabolic alterations following chronic exposure due to impaired regulation of glucose, lipid, and protein metabolism.


Assuntos
Poluentes Atmosféricos/toxicidade , Ozônio/toxicidade , Animais , Glicemia/análise , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Contagem de Células , Colesterol/sangue , Epinefrina/sangue , Glucose/metabolismo , Teste de Tolerância a Glucose , Insulina/sangue , Insulina/metabolismo , Resistência à Insulina , Células Secretoras de Insulina/metabolismo , Leptina/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Ratos Endogâmicos WKY
16.
Toxicol Lett ; 382: 22-32, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201588

RESUMO

Acrolein and trichloroethylene (TCE) are priority hazardous air pollutants due to environmental prevalence and adverse health effects; however, neuroendocrine stress-related systemic effects are not characterized. Comparing acrolein, an airway irritant, and TCE with low irritancy, we hypothesized that airway injury would be linked to neuroendocrine-mediated systemic alterations. Male and female Wistar-Kyoto rats were exposed nose-only to air, acrolein or TCE in incremental concentrations over 30 min, followed by 3.5-hr exposure to the highest concentration (acrolein - 0.0, 0.1, 0.316, 1, 3.16 ppm; TCE - 0.0, 3.16, 10, 31.6, 100 ppm). Real-time head-out plethysmography revealed acrolein decreased minute volume and increased inspiratory-time (males>females), while TCE reduced tidal-volume. Acrolein, but not TCE, inhalation increased nasal-lavage-fluid protein, lactate-dehydrogenase activity, and inflammatory cell influx (males>females). Neither acrolein nor TCE increased bronchoalveolar-lavage-fluid injury markers, although macrophages and neutrophils increased in acrolein-exposed males and females. Systemic neuroendocrine stress response assessment indicated acrolein, but not TCE, increased circulating adrenocorticotrophic hormone, and consequently corticosterone, and caused lymphopenia, but only in males. Acrolein also reduced circulating thyroid-stimulating hormone, prolactin, and testosterone in males. In conclusion, acute acrolein inhalation resulted in sex-specific upper respiratory irritation/inflammation and systemic neuroendocrine alterations linked to hypothalamic-pituitary-adrenal axes activation, which is critical in mediating extra-respiratory effects.


Assuntos
Tricloroetileno , Ratos , Animais , Masculino , Feminino , Tricloroetileno/toxicidade , Acroleína/toxicidade , Ratos Endogâmicos WKY , Sistema Respiratório , Administração por Inalação , Inflamação
17.
Antioxidants (Basel) ; 12(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-38001817

RESUMO

Individuals with psychosocial stress often experience an exaggerated response to air pollutants. Ozone (O3) exposure has been associated with the activation of the neuroendocrine stress-response system. We hypothesized that preexistent mild chronic stress plus social isolation (CS), or social isolation (SI) alone, would exacerbate the acute effects of O3 exposure on the circulating adrenal-derived stress hormones, and the expression of the genes regulating glucocorticoid stress signaling via an altered stress adaptation in a brain-region-specific manner. Male Wistar-Kyoto rats (5 weeks old) were socially isolated, plus were subjected to either CS (noise, confinement, fear, uncomfortable living, hectic activity, and single housing), SI (single housing only, restricted handling and no enrichment) or no stress (NS; double housing, frequent handling and enrichment provided) for 8 weeks. The rats were then exposed to either air or O3 (0.8 ppm for 4 h), and the samples were collected immediately after. The indicators of sympathetic and hypothalamic-pituitary axis (HPA) activation (i.e., epinephrine, corticosterone, and lymphopenia) increased with O3 exposure, but there were no effects from CS or SI, except for the depletion of serum BDNF. CS and SI revealed small changes in brain-region-specific glucocorticoid-signaling-associated markers of gene expression in the air-exposed rats (hypothalamic Nr3c1, Nr3c2 Hsp90aa1, Hspa4 and Cnr1 inhibition in SI; hippocampal HSP90aa1 increase in SI; and inhibition of the bed nucleus of the stria terminalis (BNST) Cnr1 in CS). Gene expression across all brain regions was altered by O3, reflective of glucocorticoid signaling effects, such as Fkbp5 in NS, CS and SI. The SI effects on Fkbp5 were greatest for SI in BNST. O3 increased Cnr2 expression in the hypothalamus and olfactory bulbs of the NS and SI groups. O3, in all stress conditions, generally inhibited the expression of Nr3c1 in all brain regions, Nr3c2 in the hippocampus and hypothalamus and Bdnf in the hippocampus. SI, in general, showed slightly greater O3-induced changes when compared to NS and CS. Serum metabolomics revealed increased sphingomyelins in the air-exposed SI and O3-exposed NS, with underlying SI dampening some of the O3-induced changes. These results suggest a potential link between preexistent SI and acute O3-induced increases in the circulating adrenal-derived stress hormones and brain-region-specific gene expression changes in glucocorticoid signaling, which may partly underlie the stress dynamic in those with long-term SI.

18.
Toxicol Sci ; 191(1): 106-122, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36269214

RESUMO

Recent epidemiological findings link asthma to adverse cardiovascular responses. Yet, the precise cardiovascular impacts of asthma have been challenging to disentangle from the potential cardiovascular effects caused by asthma medication. The purpose of this study was to determine the impacts of allergic airways disease alone on cardiovascular function in an experimental model. Female Wistar rats were intranasally sensitized and then challenged once per week for 5 weeks with saline vehicle or a mixture of environmental allergens (ragweed, house dust mite, and Aspergillus fumigatus). Ventilatory and cardiovascular function, measured using double-chamber plethysmography and implantable blood pressure (BP) telemetry and cardiovascular ultrasound, respectively, were assessed before sensitization and after single and final allergen challenge. Responses to a single 0.5 ppm ozone exposure and to the cardiac arrhythmogenic agent aconitine were also assessed after final challenge. A single allergen challenge in sensitized rats increased tidal volume and specific airways resistance in response to provocation with methacholine and increased bronchoalveolar lavage fluid (BALF) eosinophils, neutrophils, lymphocytes, cytokines interleukin (IL)-4, IL-5, IL-10, IL-1ß, tumor necrosis factor-α, and keratinocyte chemoattract-growth-related oncogene characteristic of allergic airways responses. Lung responses after final allergen challenge in sensitized rats were diminished, although ozone exposure increased BALF IL-6, IL-13, IL-1 ß, and interferon-γ and modified ventilatory responses only in the allergen group. Final allergen challenge also increased systolic and mean arterial BP, stroke volume, cardiac output, end-diastolic volume, sensitivity to aconitine-induced cardiac arrhythmia, and cardiac gene expression with lesser effects after a single challenge. These findings demonstrate that allergic airways responses may increase cardiovascular risk in part by altering BP and myocardial function and by causing cardiac electrical instability.


Assuntos
Asma , Doenças Cardiovasculares , Hipersensibilidade , Ozônio , Ratos , Feminino , Animais , Eosinófilos/patologia , Aconitina , Doenças Cardiovasculares/patologia , Ratos Wistar , Fatores de Risco , Pulmão , Citocinas , Alérgenos/toxicidade , Líquido da Lavagem Broncoalveolar , Fatores de Risco de Doenças Cardíacas
19.
Cureus ; 14(7): e27273, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36039224

RESUMO

Adderall is one of the most commonly prescribed stimulant medications for attention deficit hyperactivity disorder (ADHD). Although safe and effective when clinically indicated at the appropriate dose, stimulant misuse may lead to serious adverse effects. We report a 29-year-old male with a diagnosis of ADHD who took more than the recommended therapeutic dose of Adderall prescribed by his psychiatrist. He subsequently presented with persistent psychotic symptoms, which responded to oral haloperidol. Due to treatment non-compliance with multiple recurring psychiatric hospitalizations, long-acting injectable haloperidol decanoate was considered to improve compliance and prognosis. The patient's psychosis remained in remission while on the long-acting injectable. In this case study, we highlight the need for future research to identify stimulant misuse risk factors. Randomized clinical trials are needed to determine the effectiveness of long-acting injectable antipsychotic medication in the management of persistent psychosis secondary to stimulant misuse.

20.
Toxicol Sci ; 189(1): 73-90, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35737395

RESUMO

Ozone-induced lung injury, inflammation, and pulmonary/hypothalamus gene expression changes are diminished in adrenalectomized (AD) rats. Acute ozone exposure induces metabolic alterations concomitant with increases in epinephrine and corticosterone. We hypothesized that adrenal hormones are responsible for observed hepatic ozone effects, and in AD rats, these changes would be diminished. In total, 5-7 days after sham (SH) or AD surgeries, male Wistar-Kyoto rats were exposed to air or 0.8-ppm ozone for 4 h. Serum samples were analyzed for metabolites and liver for transcriptional changes immediately post-exposure. Ozone increased circulating triglycerides, cholesterol, free fatty-acids, and leptin in SH but not AD rats. Ozone-induced inhibition of glucose-mediated insulin release was absent in AD rats. Unlike diminution of ozone-induced hypothalamus and lung mRNA expression changes, AD in air-exposed rats (AD-air/SH-air) caused differential hepatic expression of ∼1000 genes. Likewise, ozone in AD rats caused differential expression of ∼1000 genes (AD-ozone/AD-air). Ozone-induced hepatic changes in SH rats reflected enrichment for pathways involving metabolic processes, including acetyl-CoA biosynthesis, TCA cycle, and sirtuins. Upstream predictor analysis identified similarity to responses produced by glucocorticoids and pathways involving forskolin. These changes were absent in AD rats exposed to ozone. However, ozone caused unique changes in AD liver mRNA reflecting activation of synaptogenesis, neurovascular coupling, neuroinflammation, and insulin signaling with inhibition of senescence pathways. In these rats, upstream predictor analysis identified numerous microRNAs likely involved in glucocorticoid insufficiency. These data demonstrate the critical role of adrenal stress hormones in ozone-induced hepatic homeostasis and necessitate further research elucidating their role in propagating environmentally driven diseases.


Assuntos
Ozônio , Animais , Corticosterona , Homeostase , Insulina , Masculino , Ozônio/toxicidade , RNA Mensageiro , Ratos , Ratos Endogâmicos WKY
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA