Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 22(7): 2475-88, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27074334

RESUMO

As coral bleaching events become more frequent and intense, our ability to predict and mitigate future events depends upon our capacity to interpret patterns within previous episodes. Responses to thermal stress vary among coral species; however the diversity of coral assemblages, environmental conditions, assessment protocols, and severity criteria applied in the global effort to document bleaching patterns creates challenges for the development of a systemic metric of taxon-specific response. Here, we describe and validate a novel framework to standardize bleaching response records and estimate their measurement uncertainties. Taxon-specific bleaching and mortality records (2036) of 374 coral taxa (during 1982-2006) at 316 sites were standardized to average percent tissue area affected and a taxon-specific bleaching response index (taxon-BRI) was calculated by averaging taxon-specific response over all sites where a taxon was present. Differential bleaching among corals was widely variable (mean taxon-BRI = 25.06 ± 18.44%, ±SE). Coral response may differ because holobionts are biologically different (intrinsic factors), they were exposed to different environmental conditions (extrinsic factors), or inconsistencies in reporting (measurement uncertainty). We found that both extrinsic and intrinsic factors have comparable influence within a given site and event (60% and 40% of bleaching response variance of all records explained, respectively). However, when responses of individual taxa are averaged across sites to obtain taxon-BRI, differential response was primarily driven by intrinsic differences among taxa (65% of taxon-BRI variance explained), not conditions across sites (6% explained), nor measurement uncertainty (29% explained). Thus, taxon-BRI is a robust metric of intrinsic susceptibility of coral taxa. Taxon-BRI provides a broadly applicable framework for standardization and error estimation for disparate historical records and collection of novel data, allowing for unprecedented accuracy in parameterization of mechanistic and predictive models and conservation plans.


Assuntos
Antozoários/fisiologia , Ecologia/métodos , Microalgas/fisiologia , Simbiose , Animais , Recifes de Corais , Modelos Teóricos
2.
BMC Ecol ; 16: 10, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26996922

RESUMO

BACKGROUND: At the forefront of ecosystems adversely affected by climate change, coral reefs are sensitive to anomalously high temperatures which disassociate (bleaching) photosynthetic symbionts (Symbiodinium) from coral hosts and cause increasingly frequent and severe mass mortality events. Susceptibility to bleaching and mortality is variable among corals, and is determined by unknown proportions of environmental history and the synergy of Symbiodinium- and coral-specific properties. Symbiodinium live within host tissues overlaying the coral skeleton, which increases light availability through multiple light-scattering, forming one of the most efficient biological collectors of solar radiation. Light-transport in the upper ~200 µm layer of corals skeletons (measured as 'microscopic' reduced-scattering coefficient, µ'(S,m)), has been identified as a determinant of excess light increase during bleaching and is therefore a potential determinant of the differential rate and severity of bleaching response among coral species. RESULTS: Here we experimentally demonstrate (in ten coral species) that, under thermal stress alone or combined thermal and light stress, low-µ'(S,m) corals bleach at higher rate and severity than high-µ'(S,m) corals and the Symbiodinium associated with low-µ'(S,m) corals experience twice the decrease in photochemical efficiency. We further modelled the light absorbed by Symbiodinium due to skeletal-scattering and show that the estimated skeleton-dependent light absorbed by Symbiodinium (per unit of photosynthetic pigment) and the temporal rate of increase in absorbed light during bleaching are several fold higher in low-µ'(S,m) corals. CONCLUSIONS: While symbionts associated with low-[Formula: see text] corals receive less total light from the skeleton, they experience a higher rate of light increase once bleaching is initiated and absorbing bodies are lost; further precipitating the bleaching response. Because microscopic skeletal light-scattering is a robust predictor of light-dependent bleaching among the corals assessed here, this work establishes µ'(S,m) as one of the key determinants of differential bleaching response.


Assuntos
Antozoários/fisiologia , Antozoários/efeitos da radiação , Recifes de Corais , Dinoflagellida/fisiologia , Animais , Luz , Fotodegradação , Espalhamento de Radiação , Simbiose , Temperatura
3.
Proc Biol Sci ; 276(1656): 407-16, 2009 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-18854299

RESUMO

The endemic Hawaiian lobeliads are exceptionally species rich and exhibit striking diversity in habitat, growth form, pollination biology and seed dispersal, but their origins and pattern of diversification remain shrouded in mystery. Up to five independent colonizations have been proposed based on morphological differences among extant taxa. We present a molecular phylogeny showing that the Hawaiian lobeliads are the product of one immigration event; that they are the largest plant clade on any single oceanic island or archipelago; that their ancestor arrived roughly 13 Myr ago; and that this ancestor was most likely woody, wind-dispersed, bird-pollinated, and adapted to open habitats at mid-elevations. Invasion of closed tropical forests is associated with evolution of fleshy fruits. Limited dispersal of such fruits in wet-forest understoreys appears to have accelerated speciation and led to a series of parallel adaptive radiations in Cyanea, with most species restricted to single islands. Consistency of Cyanea diversity across all tall islands except Hawai ;i suggests that diversification of Cyanea saturates in less than 1.5 Myr. Lobeliad diversity appears to reflect a hierarchical adaptive radiation in habitat, then elevation and flower-tube length, and provides important insights into the pattern and tempo of diversification in a species-rich clade of tropical plants.


Assuntos
Adaptação Fisiológica , Campanulaceae/genética , Campanulaceae/fisiologia , Ecossistema , Demografia , Variação Genética , Havaí , Filogenia
4.
Ecol Evol ; 3(6): 1461-70, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23789059

RESUMO

Calochortus (Liliaceae) displays high species richness, restriction of many individual taxa to narrow ranges, geographic coherence of individual clades, and parallel adaptive radiations in different regions. Here we test the first part of a hypothesis that all of these patterns may reflect gene flow at small geographic scales. We use amplified fragment length polymorphism variation to quantify the geographic scales of spatial genetic structure and apparent gene flow in Calochortus albus, a widespread member of the genus, at Henry Coe State Park in the Coast Ranges south of San Francisco Bay. Analyses of 254 mapped individuals spaced 0.001-14.4 km apart show a highly significant decline in genetic identity with ln distance, implying a root-mean-square distance of gene flow σ of 5-43 m. STRUCTURE analysis implies the existence of 2-4 clusters over the study area, with frequent reversals among clusters over short distances (<200 m) and a relatively high frequency of admixture within individuals at most sampling sites. While the intensity of spatial genetic structure in C. albus is weak, as measured by the Sp statistic, that appears to reflect low genetic identity of adjacent plants, which might reflect repeated colonizations at small spatial scales or density-dependent mortality of individual genotypes by natural enemies. Small spatial scales of gene flow and spatial genetic structure should permit, under a variety of conditions, genetic differentiation within species at such scales, setting the stage ultimately for speciation and adaptive radiation as such scales as well.

5.
PLoS One ; 8(4): e61492, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23630594

RESUMO

Calcium carbonate skeletons of scleractinian corals amplify light availability to their algal symbionts by diffuse scattering, optimizing photosynthetic energy acquisition. However, the mechanism of scattering and its role in coral evolution and dissolution of algal symbioses during "bleaching" events are largely unknown. Here we show that differences in skeletal fractal architecture at nano/micro-lengthscales within 96 coral taxa result in an 8-fold variation in light-scattering and considerably alter the algal light environment. We identified a continuum of properties that fall between two extremes: (1) corals with low skeletal fractality that are efficient at transporting and redistributing light throughout the colony with low scatter but are at higher risk of bleaching and (2) corals with high skeletal fractality that are inefficient at transporting and redistributing light with high scatter and are at lower risk of bleaching. While levels of excess light derived from the coral skeleton is similar in both groups, the low-scatter corals have a higher rate of light-amplification increase when symbiont concentration is reduced during bleaching, thus creating a positive feedback-loop between symbiont concentration and light-amplification that exposes the remaining symbionts to increasingly higher light intensities. By placing our findings in an evolutionary framework, in conjunction with a novel empirical index of coral bleaching susceptibility, we find significant correlations between bleaching susceptibility and light-scattering despite rich homoplasy in both characters; suggesting that the cost of enhancing light-amplification to the algae is revealed in decreased resilience of the partnership to stress.


Assuntos
Antozoários/ultraestrutura , Espalhamento de Radiação , Animais , Antozoários/efeitos da radiação , Evolução Biológica , Dinoflagellida/fisiologia , Luz , Simbiose
6.
Proc Natl Acad Sci U S A ; 99(4): 2338-43, 2002 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-11854527

RESUMO

Acidic extracellular solution activates transient H(+)-gated currents in dorsal root ganglion (DRG) neurons. The biophysical properties of three degenerin/epithelial sodium (DEG/ENaC) channel subunits (BNC1, ASIC, and DRASIC), and their expression in DRG, suggest that they might underlie these H(+)-gated currents and function as sensory transducers. However, it is uncertain which of these DEG/ENaC subunits generate the currents, and whether they function as homomultimers or heteromultimers. We found that the biophysical properties of transient H(+)-gated currents from medium to large mouse DRG neurons differed from BNC1, ASIC, or DRASIC expressed individually, but were reproduced by coexpression of the subunits together. To test the contribution of each subunit, we studied DRG from three strains of mice, each bearing a targeted disruption of BNC1, ASIC, or DRASIC. Deletion of any one subunit did not abolish H(+)-gated currents, but altered currents in a manner consistent with heteromultimerization of the two remaining subunits. These data indicate that combinations of two or more DEG/ENaC subunits coassemble as heteromultimers to generate transient H(+)-gated currents in mouse DRG neurons.


Assuntos
Canais Iônicos/química , Canais Iônicos/fisiologia , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/fisiologia , Canais de Sódio/química , Animais , Células COS , Clonagem Molecular , DNA Complementar/metabolismo , Canais de Sódio Degenerina , Eletrofisiologia , Canais Epiteliais de Sódio , Gânglios Espinais/metabolismo , Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Neurônios Aferentes/metabolismo , Ligação Proteica , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA