Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Mol Microbiol ; 121(4): 798-813, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38284496

RESUMO

Small multidrug resistance transporters efflux toxic compounds from bacteria and are a minimal system to understand multidrug transport. Most previous studies have focused on EmrE, the model SMR from Escherichia coli, finding that EmrE has a broader substrate profile than previously thought and that EmrE may perform multiple types of transport, resulting in substrate-dependent resistance or susceptibility. Here, we performed a broad screen to identify potential substrates of three other SMRs: PAsmr from Pseudomonas aeruginosa; FTsmr from Francisella tularensis; and SAsmr from Staphylococcus aureus. This screen tested metabolic differences in E. coli expressing each transporter versus an inactive mutant, for a clean comparison of sequence and substrate-specific differences in transporter function, and identified many substrates for each transporter. In general, resistance compounds were charged, and susceptibility substrates were uncharged, but hydrophobicity was not correlated with phenotype. Two resistance hits and two susceptibility hits were validated via growth assays and IC50 calculations. Susceptibility is proposed to occur via substrate-gated proton leak, and the addition of bicarbonate antagonizes the susceptibility phenotype, consistent with this hypothesis.


Assuntos
Proteínas de Escherichia coli , Francisella tularensis , Escherichia coli/genética , Francisella tularensis/metabolismo , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus/metabolismo , Proteínas de Escherichia coli/metabolismo , Antiporters/genética , Proteínas de Membrana Transportadoras/metabolismo , Resistência a Múltiplos Medicamentos
2.
J Biol Chem ; 299(2): 102805, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36529287

RESUMO

EmrE, a small multidrug resistance transporter from Escherichia coli, confers broad-spectrum resistance to polyaromatic cations and quaternary ammonium compounds. Previous transport assays demonstrate that EmrE transports a +1 and a +2 substrate with the same stoichiometry of two protons:one cationic substrate. This suggests that EmrE substrate binding capacity is limited to neutralization of the two essential glutamates, E14A and E14B (one from each subunit in the antiparallel homodimer), in the primary binding site. Here, we explicitly test this hypothesis, since EmrE has repeatedly broken expectations for membrane protein structure and transport mechanism. We previously showed that EmrE can bind a +1 cationic substrate and proton simultaneously, with cationic substrate strongly associated with one E14 residue, whereas the other remains accessible to bind and transport a proton. Here, we demonstrate that EmrE can bind a +2 cation substrate and a proton simultaneously using NMR pH titrations of EmrE saturated with divalent substrates, for a net +1 charge in the transport pore. Furthermore, we find that EmrE can alternate access and transport a +2 substrate and proton at the same time. Together, these results lead us to conclude that E14 charge neutralization does not limit the binding and transport capacity of EmrE.


Assuntos
Antiporters , Domínio Catalítico , Proteínas de Escherichia coli , Escherichia coli , Glutamatos , Eletricidade Estática , Antiporters/química , Antiporters/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Glutamatos/química , Glutamatos/metabolismo , Prótons , Especificidade por Substrato , Ligação Proteica , Ressonância Magnética Nuclear Biomolecular , Concentração de Íons de Hidrogênio , Farmacorresistência Bacteriana Múltipla , Transporte de Íons
3.
J Am Chem Soc ; 145(18): 10104-10115, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37097985

RESUMO

The bacterial transporter EmrE is a homo-dimeric membrane protein that effluxes cationic polyaromatic substrates against the concentration gradient by coupling to proton transport. As the archetype of the small multidrug resistance family of transporters, EmrE structure and dynamics provide atomic insights into the mechanism of transport by this family of proteins. We recently determined high-resolution structures of EmrE in complex with a cationic substrate, tetra(4-fluorophenyl)phosphonium (F4-TPP+), using solid-state NMR spectroscopy and an S64V-EmrE mutant. The substrate-bound protein exhibits distinct structures at acidic and basic pH, reflecting changes upon binding or release of a proton from residue E14, respectively. To obtain insight into the protein dynamics that mediate substrate transport, here we measure 15N rotating-frame spin-lattice relaxation (R1ρ) rates of F4-TPP+-bound S64V-EmrE in lipid bilayers under magic-angle spinning (MAS). Using perdeuterated and back-exchanged protein and 1H-detected 15N spin-lock experiments under 55 kHz MAS, we measured 15N R1ρ rates site-specifically. Many residues show spin-lock field-dependent 15N R1ρ relaxation rates. This relaxation dispersion indicates the presence of backbone motions at a rate of about 6000 s-1 at 280 K for the protein at both acidic and basic pH. This motional rate is 3 orders of magnitude faster than the alternating access rate but is within the range estimated for substrate binding. We propose that these microsecond motions may allow EmrE to sample different conformations to facilitate substrate binding and release from the transport pore.


Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/química , Bicamadas Lipídicas/química , Prótons , Antiporters/metabolismo , Proteínas de Membrana Transportadoras
4.
J Biol Chem ; 297(4): 101220, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34562455

RESUMO

Transport stoichiometry determination can provide great insight into the mechanism and function of ion-coupled transporters. Traditional reversal potential assays are a reliable, general method for determining the transport stoichiometry of ion-coupled transporters, but the time and material costs of this technique hinder investigations of transporter behavior under multiple experimental conditions. Solid-supported membrane electrophysiology (SSME) allows multiple recordings of liposomal or membrane samples adsorbed onto a sensor and is sensitive enough to detect transport currents from moderate-flux transporters that are inaccessible to traditional electrophysiology techniques. Here, we use SSME to develop a new method for measuring transport stoichiometry with greatly improved throughput. Using this technique, we were able to verify the recent report of a fixed 2:1 stoichiometry for the proton:guanidinium antiporter Gdx, reproduce the 1H+:2Cl- antiport stoichiometry of CLC-ec1, and confirm loose proton:nitrate coupling for CLC-ec1. Furthermore, we were able to demonstrate quantitative exchange of internal contents of liposomes adsorbed onto SSME sensors to allow multiple experimental conditions to be tested on a single sample. Our SSME method provides a fast, easy, general method for measuring transport stoichiometry, which will facilitate future mechanistic and functional studies of ion-coupled transporters.


Assuntos
Antiporters/química , Fenômenos Eletrofisiológicos , Lipossomos/química , Antiporters/metabolismo , Transporte de Íons
5.
Proc Natl Acad Sci U S A ; 114(47): E10083-E10091, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29114048

RESUMO

EmrE is a small multidrug resistance transporter found in Escherichia coli that confers resistance to toxic polyaromatic cations due to its proton-coupled antiport of these substrates. Here we show that EmrE breaks the rules generally deemed essential for coupled antiport. NMR spectra reveal that EmrE can simultaneously bind and cotransport proton and drug. The functional consequence of this finding is an exceptionally promiscuous transporter: not only can EmrE export diverse drug substrates, it can couple antiport of a drug to either one or two protons, performing both electrogenic and electroneutral transport of a single substrate. We present a free-exchange model for EmrE antiport that is consistent with these results and recapitulates ∆pH-driven concentrative drug uptake. Kinetic modeling suggests that free exchange by EmrE sacrifices coupling efficiency but boosts initial transport speed and drug release rate, which may facilitate efficient multidrug efflux.


Assuntos
Antiporters/química , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Oniocompostos/metabolismo , Compostos Organofosforados/metabolismo , Prótons , Xenobióticos/metabolismo , Antiporters/genética , Antiporters/metabolismo , Sítios de Ligação , Transporte Biológico , Dicicloexilcarbodi-Imida/toxicidade , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Concentração de Íons de Hidrogênio , Cinética , Simulação de Dinâmica Molecular , Oniocompostos/química , Oniocompostos/farmacologia , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidilgliceróis/química , Fosfatidilgliceróis/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteolipídeos/química , Proteolipídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Termodinâmica , Xenobióticos/química , Xenobióticos/farmacologia
6.
Biophys J ; 117(2): 388-398, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31301804

RESUMO

The voltage-sensing domain (VSD) is a conserved structural module that regulates the gating of voltage-dependent ion channels in response to a change in membrane potential. Although the structures of many VSD-containing ion channels are now available, our understanding of the structural dynamics associated with gating transitions remains limited. To probe dynamics with site-specific resolution, we utilized NMR spectroscopy to characterize the VSD derived from Shaker potassium channel in 1-palmitoyl-2-hydroxy-sn-glycero-3-phospho-(1'-rac-glycerol) (LPPG) micelles. The backbone dihedral angles predicted based on secondary chemical shifts using torsion angle likeliness obtained from shift (TALOS+) showed that the Shaker-VSD shares many structural features with the homologous Kv1.2/2.1 chimera, including a transition from α-helix to 310 helix in the C-terminal portion of the fourth transmembrane helix. Nevertheless, there are clear differences between the Shaker-VSD and Kv1.2/2.1 chimera in the S2-S3 linker and S3 transmembrane region, where the organization of secondary structure elements in Shaker-VSD appears to more closely resemble the KvAP-VSD. Comparison of microsecond-long molecular dynamics simulations of Kv 1.2-VSD in LPPG micelles and a 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) bilayer showed that LPPG micelles do not induce significant structural distortion in the isolated voltage sensor. To assess the integrity of the tertiary fold, we directly probed the binding of BrMT analog 2-[2-({[3-(2-amino-ethyl)-6-bromo-1H-indol-2-yl]methoxy}k7methyl)-6-bromo-1H-indol-3-yl]ethan-1-amine (BrET), a gating modifier toxin, and identified the location of the putative binding site. Our results suggest that the Shaker-VSD in LPPG micelles is in a native-like fold and is likely to provide valuable insights into the dynamics of voltage-gating and its regulation.


Assuntos
Glicerol/análogos & derivados , Glicerol/química , Micelas , Ressonância Magnética Nuclear Biomolecular , Superfamília Shaker de Canais de Potássio/química , Sequência de Aminoácidos , Domínios Proteicos , Estrutura Secundária de Proteína
7.
J Biol Chem ; 293(49): 19137-19147, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30287687

RESUMO

Ion-coupled transporters must regulate access of ions and substrates into and out of the binding site to actively transport substrates and minimize dissipative leak of ions. Within the single-site alternating access model, competitive substrate binding forms the foundation of ion-coupled antiport. Strict competition between substrates leads to stoichiometric antiport without slippage. However, recent NMR studies of the bacterial multidrug transporter EmrE have demonstrated that this multidrug transporter can simultaneously bind drug and proton, which will affect the transport stoichiometry and efficiency of coupled antiport. Here, we investigated the nature of substrate competition in EmrE using multiple methods to measure proton release upon the addition of saturating concentrations of drug as a function of pH. The resulting proton-release profile confirmed simultaneous binding of drug and proton, but suggested that a residue outside EmrE's Glu-14 binding site may release protons upon drug binding. Using NMR-monitored pH titrations, we trace this drug-induced deprotonation event to His-110, EmrE's C-terminal residue. Further NMR experiments disclosed that the C-terminal tail is strongly coupled to EmrE's drug-binding domain. Consideration of our results alongside those from previous studies of EmrE suggests that this conserved tail participates in secondary gating of EmrE-mediated proton/drug transport, occluding the binding pocket of fully protonated EmrE in the absence of drug to prevent dissipative proton transport.


Assuntos
Antiporters/metabolismo , Proteínas de Escherichia coli/metabolismo , Oniocompostos/metabolismo , Compostos Organofosforados/metabolismo , Prótons , Antiporters/química , Sítios de Ligação , Escherichia coli/química , Proteínas de Escherichia coli/química , Ácido Glutâmico/química , Histidina/química , Concentração de Íons de Hidrogênio , Oniocompostos/química , Compostos Organofosforados/química , Ligação Proteica , Conformação Proteica , Domínios Proteicos
8.
Anal Biochem ; 549: 130-135, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29559333

RESUMO

Membrane transporters are an important class of proteins which remain challenging to study. Transport assays are crucial to developing our understanding of such proteins as they allow direct measurement of their transport activity. However, currently available methods for monitoring liposomal loading of organic substrates primarily rely on detection of radioactively or fluorescently labeled substrates. The requirement of a labeled substrate significantly restricts the systems and substrates that can be studied. Here we present a mass spectrometry based detection method for liposomal uptake assays that eliminates the need for labeled substrates. We demonstrate the efficacy of the assay with EmrE, a small multidrug resistance transporter found in E. coli that has become a model transport system for the study of secondary active transport. Furthermore, we develop a method for differentiation between bound and transported substrate, enhancing the information gained from the liposomal uptake assay. The transport assay presented here is readily applicable to other transport systems and substrates.


Assuntos
Antiporters/química , Farmacorresistência Bacteriana Múltipla , Proteínas de Escherichia coli/química , Escherichia coli/química , Lipossomos/química , Espectrometria de Massas/métodos , Transporte Biológico Ativo
9.
Proc Natl Acad Sci U S A ; 112(50): 15366-71, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26621745

RESUMO

Flux-dependent inactivation that arises from functional coupling between the inner gate and the selectivity filter is widespread in ion channels. The structural basis of this coupling has only been well characterized in KcsA. Here we present NMR data demonstrating structural and dynamic coupling between the selectivity filter and intracellular constriction point in the bacterial nonselective cation channel, NaK. This transmembrane allosteric communication must be structurally different from KcsA because the NaK selectivity filter does not collapse under low-cation conditions. Comparison of NMR spectra of the nonselective NaK and potassium-selective NaK2K indicates that the number of ion binding sites in the selectivity filter shifts the equilibrium distribution of structural states throughout the channel. This finding was unexpected given the nearly identical crystal structure of NaK and NaK2K outside the immediate vicinity of the selectivity filter. Our results highlight the tight structural and dynamic coupling between the selectivity filter and the channel scaffold, which has significant implications for channel function. NaK offers a distinct model to study the physiologically essential connection between ion conduction and channel gating.


Assuntos
Bacillus cereus/química , Canais de Potássio/química , Potássio/metabolismo , Regulação Alostérica , Cristalografia por Raios X , Ativação do Canal Iônico , Íons , Espectroscopia de Ressonância Magnética , Proteínas Mutantes/química , Mutação Puntual , Dobramento de Proteína , Estrutura Secundária de Proteína , Soluções , Temperatura , Fatores de Tempo
10.
Nature ; 481(7379): 45-50, 2011 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-22178925

RESUMO

Small multidrug resistance transporters provide an ideal system to study the minimal requirements for active transport. EmrE is one such transporter in Escherichia coli. It exports a broad class of polyaromatic cation substrates, thus conferring resistance to drug compounds matching this chemical description. However, a great deal of controversy has surrounded the topology of the EmrE homodimer. Here we show that asymmetric antiparallel EmrE exchanges between inward- and outward-facing states that are identical except that they have opposite orientation in the membrane. We quantitatively measure the global conformational exchange between these two states for substrate-bound EmrE in bicelles using solution NMR dynamics experiments. Förster resonance energy transfer reveals that the monomers within each dimer are antiparallel, and paramagnetic relaxation enhancement NMR experiments demonstrate differential water accessibility of the two monomers within each dimer. Our experiments reveal a 'dynamic symmetry' that reconciles the asymmetric EmrE structure with the functional symmetry of residues in the active site.


Assuntos
Antiporters/química , Antiporters/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Preparações Farmacêuticas/metabolismo , Transporte Biológico , Domínio Catalítico , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Multimerização Proteica , Água/química
11.
J Biomol NMR ; 64(4): 307-32, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27023095

RESUMO

NMR spectroscopy is a powerful technique for determining structural and functional features of biomolecules in physiological solution as well as for observing their intermolecular interactions in real-time. However, complex steps associated with its practice have made the approach daunting for non-specialists. We introduce an NMR platform that makes biomolecular NMR spectroscopy much more accessible by integrating tools, databases, web services, and video tutorials that can be launched by simple installation of NMRFAM software packages or using a cross-platform virtual machine that can be run on any standard laptop or desktop computer. The software package can be downloaded freely from the NMRFAM software download page ( http://pine.nmrfam.wisc.edu/download_packages.html ), and detailed instructions are available from the Integrative NMR Video Tutorial page ( http://pine.nmrfam.wisc.edu/integrative.html ).


Assuntos
Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Conformação Molecular , Ressonância Magnética Nuclear Biomolecular/métodos , Ácidos Nucleicos/química , Proteínas/química , Pesquisa , Software , Navegador
12.
PLoS Pathog ; 10(1): e1003869, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24415938

RESUMO

Plasmodium parasites use specialized ligands which bind to red blood cell (RBC) receptors during invasion. Defining the mechanism of receptor recognition is essential for the design of interventions against malaria. Here, we present the structural basis for Duffy antigen (DARC) engagement by P. vivax Duffy binding protein (DBP). We used NMR to map the core region of the DARC ectodomain contacted by the receptor binding domain of DBP (DBP-RII) and solved two distinct crystal structures of DBP-RII bound to this core region of DARC. Isothermal titration calorimetry studies show these structures are part of a multi-step binding pathway, and individual point mutations of residues contacting DARC result in a complete loss of RBC binding by DBP-RII. Two DBP-RII molecules sandwich either one or two DARC ectodomains, creating distinct heterotrimeric and heterotetrameric architectures. The DARC N-terminus forms an amphipathic helix upon DBP-RII binding. The studies reveal a receptor binding pocket in DBP and critical contacts in DARC, reveal novel targets for intervention, and suggest that targeting the critical DARC binding sites will lead to potent disruption of RBC engagement as complex assembly is dependent on DARC binding. These results allow for models to examine inter-species infection barriers, Plasmodium immune evasion mechanisms, P. knowlesi receptor-ligand specificity, and mechanisms of naturally acquired P. vivax immunity. The step-wise binding model identifies a possible mechanism by which signaling pathways could be activated during invasion. It is anticipated that the structural basis of DBP host-cell engagement will enable development of rational therapeutics targeting this interaction.


Assuntos
Antígenos de Protozoários/química , Sistema do Grupo Sanguíneo Duffy/química , Eritrócitos/química , Plasmodium vivax/química , Proteínas de Protozoários/química , Receptores de Superfície Celular/química , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Linhagem Celular , Sistema do Grupo Sanguíneo Duffy/genética , Sistema do Grupo Sanguíneo Duffy/imunologia , Eritrócitos/imunologia , Eritrócitos/parasitologia , Humanos , Evasão da Resposta Imune , Malária Vivax/genética , Malária Vivax/imunologia , Plasmodium vivax/imunologia , Plasmodium vivax/metabolismo , Mutação Puntual , Ligação Proteica , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Relação Estrutura-Atividade
13.
J Biol Chem ; 289(10): 6825-6836, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24448799

RESUMO

EmrE, a small multidrug resistance transporter, serves as an ideal model to study coupling between multidrug recognition and protein function. EmrE has a single small binding pocket that must accommodate the full range of diverse substrates recognized by this transporter. We have studied a series of tetrahedral compounds, as well as several planar substrates, to examine multidrug recognition and transport by EmrE. Here we show that even within this limited series, the rate of interconversion between the inward- and outward-facing states of EmrE varies over 3 orders of magnitude. Thus, the identity of the bound substrate controls the rate of this critical step in the transport process. The binding affinity also varies over a similar range and is correlated with substrate hydrophobicity within the tetrahedral substrate series. Substrate identity influences both the ground-state and transition-state energies for the conformational exchange process, highlighting the coupling between substrate binding and transport required for alternating access antiport.


Assuntos
Antiporters/metabolismo , Membrana Celular/metabolismo , Farmacorresistência Bacteriana Múltipla , Proteínas de Escherichia coli/metabolismo , Escherichia coli , Antiporters/química , Antiporters/genética , Transporte Biológico , Membrana Celular/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Cinética , Ligantes , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Secundária de Proteína , Especificidade por Substrato
14.
Biochim Biophys Acta ; 1838(7): 1817-22, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24680655

RESUMO

The small multi-drug resistant (SMR) transporter EmrE functions as a homodimer. Although the small size of EmrE would seem to make it an ideal model system, it can also make it challenging to work with. As a result, a great deal of controversy has surrounded even such basic questions as the oligomeric state. Here we show that the purified protein is a homodimer in isotropic bicelles with a monomer-dimer equilibrium constant (KMD(2D)) of 0.002-0.009mol% for both the substrate-free and substrate-bound states. Thus, the dimer is stabilized in bicelles relative to detergent micelles where the KMD(2D) is only 0.8-0.95mol% (Butler et al. 2004). In dilauroylphosphatidylcholine (DLPC) liposomes KMD(2D) is 0.0005-0.0008mol% based on Förster resonance energy transfer (FRET) measurements, slightly tighter than bicelles. These results emphasize the importance of the lipid membrane in influencing dimer affinity.


Assuntos
Antiporters/metabolismo , Proteínas de Escherichia coli/metabolismo , Lipídeos de Membrana/metabolismo , Transporte Biológico , Escherichia coli/metabolismo , Bicamadas Lipídicas/metabolismo , Lipossomos/metabolismo , Micelas , Multimerização Proteica
15.
Biophys J ; 107(3): 613-620, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25099800

RESUMO

EmrE is a small multidrug resistance transporter that has been well studied as a model for secondary active transport. Because transport requires the protein to convert between at least two states open to opposite sides of the membrane, it is expected that blocking these conformational transitions will prevent transport activity. We have previously shown that NMR can quantitatively measure the transition between the open-in and open-out states of EmrE in bicelles. Now, we have used the antiparallel EmrE crystal structure to design a cross-link to inhibit this conformational exchange process. We probed the structural, dynamic, and functional effects of this cross-link with NMR and in vivo efflux assays. Our NMR results show that our antiparallel cross-link performs as predicted: dramatically reducing conformational exchange while minimally perturbing the overall structure of EmrE and essentially trapping EmrE in a single state. The same cross-link also impairs ethidium efflux activity by EmrE in Escherichia coli. This confirms the hypothesis that transport can be inhibited simply by blocking conformational transitions in a properly folded transporter. The success of our cross-linker design also provides further evidence that the antiparallel crystal structure provides a good model for functional EmrE.


Assuntos
Antiporters/química , Proteínas de Escherichia coli/química , Simulação de Dinâmica Molecular , Sequência de Aminoácidos , Antiporters/metabolismo , Transporte Biológico , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Etídio/química , Etídio/farmacologia , Dados de Sequência Molecular , Ligação Proteica
16.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37808795

RESUMO

Small Multidrug Resistance (SMR) transporters are key players in the defense of multidrug-resistant pathogens to toxins and other homeostasis-perturbing compounds. However, recent evidence demonstrates that EmrE, an SMR from Escherichia coli and a model for understanding transport, can also induce susceptibility to some compounds by drug-gated proton leak. This runs down the ∆pH component of the Proton Motive Force (PMF), reducing viability of the affected bacteria. Proton leak may provide an unexplored drug target distinct from the targets of most known antibiotics. Activating proton leak requires an SMR to be merely present, rather than be the primary resistance mechanism, and dissipates the energy source for many other efflux pumps. PAsmr, an EmrE homolog from P. aeruginosa, transports many EmrE substrates in cells and purified systems. We hypothesized that PAsmr, like EmrE, may confer susceptibility to some compounds via drug-gated proton leak. Growth assays of E. coli expressing PAsmr displayed substrate-dependent resistance and susceptibility phenotypes, and in vitro solid-supported membrane electrophysiology experiments revealed that PAsmr performs both antiport and substrate-gated proton uniport, demonstrating the same functional promiscuity observed in EmrE. Growth assays of P. aeruginosa strain PA14 demonstrated that PAsmr contributes resistance to some antimicrobial compounds, but no growth defect is observed with susceptibility substrates, suggesting P. aeruginosa can compensate for the proton leak occurring through PAsmr. These phenotypic differences between P. aeruginosa and E. coli advance our understanding of underlying resistance mechanisms in P. aeruginosa and prompt further investigation into the role that SMRs play in antibiotic resistance in pathogens.

17.
Biochim Biophys Acta ; 1818(3): 814-20, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22226849

RESUMO

Reconstitution of integral membrane proteins into membrane mimetic environments suitable for biophysical and structural studies has long been a challenge. Isotropic bicelles promise the best of both worlds-keeping a membrane protein surrounded by a small patch of bilayer-forming lipids while remaining small enough to tumble isotropically and yield good solution NMR spectra. However, traditional methods for the reconstitution of membrane proteins into isotropic bicelles expose the proteins to potentially destabilizing environments. Reconstituting the protein into liposomes and then adding short-chain lipid to this mixture produces bicelle samples while minimizing protein exposure to unfavorable environments. The result is higher yield of protein reconstituted into bicelles and improved long-term stability, homogeneity, and sample-to-sample reproducibility. This suggests better preservation of protein structure during the reconstitution procedure and leads to decreased cost per sample, production of fewer samples, and reduction of the NMR time needed to collect a high quality spectrum. Furthermore, this approach enabled reconstitution of protein into isotropic bicelles with a wider range of lipid compositions. These results are demonstrated with the small multidrug resistance transporter EmrE, a protein known to be highly sensitive to its environment.


Assuntos
Antiporters/química , Proteínas de Escherichia coli/química , Lipossomos/química , Lipídeos de Membrana/química , Farmacorresistência Bacteriana Múltipla/fisiologia , Escherichia coli/química , Ressonância Magnética Nuclear Biomolecular , Estabilidade Proteica , Estrutura Terciária de Proteína
18.
Nature ; 450(7171): 913-6, 2007 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-18026087

RESUMO

The synergy between structure and dynamics is essential to the function of biological macromolecules. Thermally driven dynamics on different timescales have been experimentally observed or simulated, and a direct link between micro- to milli-second domain motions and enzymatic function has been established. However, very little is understood about the connection of these functionally relevant, collective movements with local atomic fluctuations, which are much faster. Here we show that pico- to nano-second timescale atomic fluctuations in hinge regions of adenylate kinase facilitate the large-scale, slower lid motions that produce a catalytically competent state. The fast, local mobilities differ between a mesophilic and hyperthermophilic adenylate kinase, but are strikingly similar at temperatures at which enzymatic activity and free energy of folding are matched. The connection between different timescales and the corresponding amplitudes of motions in adenylate kinase and their linkage to catalytic function is likely to be a general characteristic of protein energy landscapes.


Assuntos
Enzimas/química , Enzimas/metabolismo , Adenilato Quinase/química , Adenilato Quinase/metabolismo , Proteínas de Bactérias/química , Catálise , Escherichia coli/enzimologia , Cinética , Modelos Moleculares , Movimento , Temperatura
19.
Nature ; 450(7171): 838-44, 2007 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-18026086

RESUMO

The mechanisms by which enzymes achieve extraordinary rate acceleration and specificity have long been of key interest in biochemistry. It is generally recognized that substrate binding coupled to conformational changes of the substrate-enzyme complex aligns the reactive groups in an optimal environment for efficient chemistry. Although chemical mechanisms have been elucidated for many enzymes, the question of how enzymes achieve the catalytically competent state has only recently become approachable by experiment and computation. Here we show crystallographic evidence for conformational substates along the trajectory towards the catalytically competent 'closed' state in the ligand-free form of the enzyme adenylate kinase. Molecular dynamics simulations indicate that these partially closed conformations are sampled in nanoseconds, whereas nuclear magnetic resonance and single-molecule fluorescence resonance energy transfer reveal rare sampling of a fully closed conformation occurring on the microsecond-to-millisecond timescale. Thus, the larger-scale motions in substrate-free adenylate kinase are not random, but preferentially follow the pathways that create the configuration capable of proficient chemistry. Such preferred directionality, encoded in the fold, may contribute to catalysis in many enzymes.


Assuntos
Adenilato Quinase/química , Adenilato Quinase/metabolismo , Bactérias/enzimologia , Movimento , Catálise , Simulação por Computador , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Movimento (Física) , Conformação Proteica , Soluções , Especificidade por Substrato , Fatores de Tempo
20.
J Mol Biol ; 435(24): 168340, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37924862

RESUMO

Poly(UG) or "pUG" RNAs are UG or GU dinucleotide repeat sequences which are highly abundant in eukaryotes. Post-transcriptional addition of pUGs to RNA 3' ends marks mRNAs as vectors for gene silencing in C. elegans. We previously determined the crystal structure of pUG RNA bound to the ligand N-methyl mesoporphyrin IX (NMM), but the structure of free pUG RNA is unknown. Here we report the solution structure of the free pUG RNA (GU)12, as determined by nuclear magnetic resonance spectroscopy and small and wide-angle x-ray scattering (NMR-SAXS-WAXS). The low complexity sequence and 4-fold symmetry of the structure result in overlapped NMR signals that complicate chemical shift assignment. We therefore utilized single site-specific deoxyribose modifications which did not perturb the structure and introduced well-resolved methylene signals that are easily identified in NMR spectra. The solution structure ensemble has a root mean squared deviation (RMSD) of 0.62 Å and is a compact, left-handed quadruplex with a Z-form backbone, or "pUG fold." Overall, the structure agrees with the crystal structure of (GU)12 bound to NMM, indicating the pUG fold is unaltered by docking of the NMM ligand. The solution structure reveals conformational details that could not be resolved by x-ray crystallography, which explain how the pUG fold can form within longer RNAs.


Assuntos
Poli G , Poli U , RNA , Animais , Caenorhabditis elegans/genética , Cristalografia por Raios X , Ligantes , Modelos Moleculares , RNA/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Poli U/química , Poli G/química , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA