Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474222

RESUMO

High mobility group box 1 (HMGB1), a protein with important functions, has been recognized as a potential therapeutic target for the treatment of sepsis. One possible mechanism for this is that inhibiting HMGB1 secretion can exert antiseptic effects, which can restore the integrity of the vascular barrier. (7S)-(+)-cyclopentyl carbamic acid 8,8-dimethyl-2-oxo-6,7-dihydro-2H,8H-pyrano[3,2-g]chromen-7-yl-ester (CGK012) is a newly synthesized pyranocoumarin compound that could function as a novel small-molecule inhibitor of the Wnt/ß-catenin signaling pathway. However, no studies have yet determined the effects of CGK012 on sepsis. We investigated the potential of CGK012 to attenuate the excessive permeability induced by HMGB1 and enhance survival rates in a mouse model of sepsis with reduced HMGB1 levels following lipopolysaccharide (LPS) treatment. In both LPS-stimulated human endothelial cells and a mouse model exhibiting septic symptoms due to cecal ligation and puncture (CLP), we assessed proinflammatory protein levels and tissue damage biomarkers as indicators of reduced vascular permeability. CGK012 was applied after induction in human endothelial cells exposed to LPS and the CLP-induced mouse model of sepsis. CGK012 effectively mitigated excessive permeability and suppressed HMGB1 release, resulting in improved vascular stability, decreased mortality, and enhanced histological conditions in the mouse model of CLP-induced sepsis. In conclusion, our findings indicate that CGK012 treatment in mice with CLP-induced sepsis diminished HMGB1 release and increased the survival rate, suggesting its potential as a pharmaceutical intervention for sepsis.


Assuntos
Anti-Infecciosos Locais , Carbamatos , Cumarínicos , Proteína HMGB1 , Sepse , Animais , Humanos , Camundongos , Anti-Infecciosos Locais/farmacologia , Anti-Infecciosos Locais/uso terapêutico , Modelos Animais de Doenças , Proteína HMGB1/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Sepse/metabolismo
2.
J Microbiol Biotechnol ; 34(1): 157-166, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38282410

RESUMO

Sarcopenia is an age-related loss of muscle mass and function for which there is no approved pharmacological treatment. We tested direct efficacy by evaluating grip strength improvement in a sarcopenia mouse model rather than drug screening, which inhibits specific molecular mechanisms. Various physiological functions of ginseng berries are beneficial to the human body. The present study aimed to evaluate the efficacy and safety of steamed ginseng berry powder (SGBP). SGBP administration increased myotube diameter and suppressed the mRNA expression of sarcopenia-inducing molecules. SGBP also reduced the levels of inflammatory transcription factors and cytokines that are known to induce sarcopenia. Oral administration of SGBP improved muscle mass and physical performance in a mouse model of sarcopenia. In summary, our data suggest that SGBP is a novel therapeutic candidate for the amelioration of muscle weakness, including sarcopenia.


Assuntos
Panax , Sarcopenia , Animais , Camundongos , Humanos , Sarcopenia/tratamento farmacológico , Sarcopenia/metabolismo , Frutas , Pós/metabolismo , Pós/farmacologia , Atrofia Muscular/tratamento farmacológico , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA