Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(26): 6243-6261.e27, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34914922

RESUMO

COVID-19-induced "acute respiratory distress syndrome" (ARDS) is associated with prolonged respiratory failure and high mortality, but the mechanistic basis of lung injury remains incompletely understood. Here, we analyze pulmonary immune responses and lung pathology in two cohorts of patients with COVID-19 ARDS using functional single-cell genomics, immunohistology, and electron microscopy. We describe an accumulation of CD163-expressing monocyte-derived macrophages that acquired a profibrotic transcriptional phenotype during COVID-19 ARDS. Gene set enrichment and computational data integration revealed a significant similarity between COVID-19-associated macrophages and profibrotic macrophage populations identified in idiopathic pulmonary fibrosis. COVID-19 ARDS was associated with clinical, radiographic, histopathological, and ultrastructural hallmarks of pulmonary fibrosis. Exposure of human monocytes to SARS-CoV-2, but not influenza A virus or viral RNA analogs, was sufficient to induce a similar profibrotic phenotype in vitro. In conclusion, we demonstrate that SARS-CoV-2 triggers profibrotic macrophage responses and pronounced fibroproliferative ARDS.


Assuntos
COVID-19/patologia , COVID-19/virologia , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/virologia , Macrófagos/patologia , Macrófagos/virologia , SARS-CoV-2/fisiologia , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , COVID-19/diagnóstico por imagem , Comunicação Celular , Estudos de Coortes , Fibroblastos/patologia , Regulação da Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Fibrose Pulmonar Idiopática/genética , Células-Tronco Mesenquimais/patologia , Fenótipo , Proteoma/metabolismo , Receptores de Superfície Celular/metabolismo , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/virologia , Tomografia Computadorizada por Raios X , Transcrição Gênica
2.
Immunity ; 55(7): 1159-1172, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35777361

RESUMO

Neurological symptoms in SARS-CoV-2-infected patients have been reported, but their cause remains unclear. In theory, the neurological symptoms observed after SARS-CoV-2 infection could be (1) directly caused by the virus infecting brain cells, (2) indirectly by our body's local or systemic immune response toward the virus, (3) by coincidental phenomena, or (4) a combination of these factors. As indisputable evidence of intact and replicating SARS-CoV-2 particles in the central nervous system (CNS) is currently lacking, we suggest focusing on the host's immune reaction when trying to understand the neurocognitive symptoms associated with SARS-CoV-2 infection. In this perspective, we discuss the possible immune-mediated mechanisms causing functional or structural CNS alterations during acute infection as well as in the post-infectious context. We also review the available literature on CNS affection in the context of COVID-19 infection, as well as observations from animal studies on the molecular pathways involved in sickness behavior.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Encéfalo , Sistema Nervoso Central
3.
Nat Rev Neurosci ; 25(1): 30-42, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38049610

RESUMO

Worldwide, over 694 million people have been infected with SARS-CoV-2, with an estimated 55-60% of those infected developing COVID-19. Since the beginning of the pandemic in December 2019, different variants of concern have appeared and continue to occur. With the emergence of different variants, an increasing rate of vaccination and previous infections, the acute neurological symptomatology of COVID-19 changed. Moreover, 10-45% of individuals with a history of SARS-CoV-2 infection experience symptoms even 3 months after disease onset, a condition that has been defined as 'post-COVID-19' by the World Health Organization and that occurs independently of the virus variant. The pathomechanisms of COVID-19-related neurological complaints have become clearer during the past 3 years. To date, there is no overt - that is, truly convincing - evidence for SARS-CoV-2 particles in the brain. In this Review, we put special emphasis on discussing the  methodological difficulties of viral detection in CNS tissue and discuss immune-based (systemic and central) effects contributing to COVID-19-related CNS affection. We sequentially review the reported changes to CNS cells in COVID-19, starting with the blood-brain barrier and blood-cerebrospinal fluid barrier - as systemic factors from the periphery appear to primarily influence barriers and conduits - before we describe changes in brain parenchymal cells, including microglia, astrocytes, neurons and oligodendrocytes as well as cerebral lymphocytes. These findings are critical to understanding CNS affection in acute COVID-19 and post-COVID-19 in order to translate these findings into treatment options, which are still very limited.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Sistema Nervoso Central , Encéfalo , Barreira Hematoencefálica
4.
Immunity ; 48(2): 380-395.e6, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29426702

RESUMO

Individual reports suggest that the central nervous system (CNS) contains multiple immune cell types with diverse roles in tissue homeostasis, immune defense, and neurological diseases. It has been challenging to map leukocytes across the entire brain, and in particular in pathology, where phenotypic changes and influx of blood-derived cells prevent a clear distinction between reactive leukocyte populations. Here, we applied high-dimensional single-cell mass and fluorescence cytometry, in parallel with genetic fate mapping systems, to identify, locate, and characterize multiple distinct immune populations within the mammalian CNS. Using this approach, we revealed that microglia, several subsets of border-associated macrophages and dendritic cells coexist in the CNS at steady state and exhibit disease-specific transformations in the immune microenvironment during aging and in models of Alzheimer's disease and multiple sclerosis. Together, these data and the described framework provide a resource for the study of disease mechanisms, potential biomarkers, and therapeutic targets in CNS disease.


Assuntos
Envelhecimento/imunologia , Sistema Nervoso Central/imunologia , Leucócitos/imunologia , Macrófagos/imunologia , Animais , Células Dendríticas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/imunologia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/imunologia , Análise de Célula Única
5.
Immunity ; 47(3): 566-581.e9, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28930663

RESUMO

Microglia play a pivotal role in the maintenance of brain homeostasis but lose homeostatic function during neurodegenerative disorders. We identified a specific apolipoprotein E (APOE)-dependent molecular signature in microglia from models of amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and Alzheimer's disease (AD) and in microglia surrounding neuritic ß-amyloid (Aß)-plaques in the brains of people with AD. The APOE pathway mediated a switch from a homeostatic to a neurodegenerative microglia phenotype after phagocytosis of apoptotic neurons. TREM2 (triggering receptor expressed on myeloid cells 2) induced APOE signaling, and targeting the TREM2-APOE pathway restored the homeostatic signature of microglia in ALS and AD mouse models and prevented neuronal loss in an acute model of neurodegeneration. APOE-mediated neurodegenerative microglia had lost their tolerogenic function. Our work identifies the TREM2-APOE pathway as a major regulator of microglial functional phenotype in neurodegenerative diseases and serves as a novel target that could aid in the restoration of homeostatic microglia.


Assuntos
Apolipoproteínas E/metabolismo , Glicoproteínas de Membrana/metabolismo , Microglia/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais , Transcriptoma , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Apoptose/genética , Apoptose/imunologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Análise por Conglomerados , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Marcação de Genes , Humanos , Tolerância Imunológica , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microglia/imunologia , Monócitos/imunologia , Monócitos/metabolismo , Doenças Neurodegenerativas/imunologia , Neurônios/metabolismo , Fagocitose/genética , Fagocitose/imunologia , Fenótipo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Fator de Crescimento Transformador beta/metabolismo
6.
J Neuroinflammation ; 21(1): 58, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409076

RESUMO

Neuroinflammation is highly influenced by microglia, particularly through activation of the NLRP3 inflammasome and subsequent release of IL-1ß. Extracellular ATP is a strong activator of NLRP3 by inducing K+ efflux as a key signaling event, suggesting that K+-permeable ion channels could have high therapeutic potential. In microglia, these include ATP-gated THIK-1 K+ channels and P2X7 receptors, but their interactions and potential therapeutic role in the human brain are unknown. Using a novel specific inhibitor of THIK-1 in combination with patch-clamp electrophysiology in slices of human neocortex, we found that THIK-1 generated the main tonic K+ conductance in microglia that sets the resting membrane potential. Extracellular ATP stimulated K+ efflux in a concentration-dependent manner only via P2X7 and metabotropic potentiation of THIK-1. We further demonstrated that activation of P2X7 was mandatory for ATP-evoked IL-1ß release, which was strongly suppressed by blocking THIK-1. Surprisingly, THIK-1 contributed only marginally to the total K+ conductance in the presence of ATP, which was dominated by P2X7. This suggests a previously unknown, K+-independent mechanism of THIK-1 for NLRP3 activation. Nuclear sequencing revealed almost selective expression of THIK-1 in human brain microglia, while P2X7 had a much broader expression. Thus, inhibition of THIK-1 could be an effective and, in contrast to P2X7, microglia-specific therapeutic strategy to contain neuroinflammation.


Assuntos
Microglia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças Neuroinflamatórias , Canais Iônicos/metabolismo , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Receptores Purinérgicos P2X7/metabolismo
7.
EMBO J ; 38(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30617086

RESUMO

Alzheimer's disease is characterized not only by extracellular amyloid plaques and neurofibrillary tangles, but also by microglia-mediated neuroinflammation. Recently, autophagy has been linked to the regulation of the inflammatory response. Thus, we investigated how an impairment of autophagy mediated by BECN1/Beclin1 reduction, as described in Alzheimer's disease patients, would influence cytokine production of microglia. Acutely stimulated microglia from Becn1+/- mice exhibited increased expression of IL-1beta and IL-18 compared to wild-type microglia. Becn1+/-APPPS1 mice also contained enhanced IL-1beta levels. The investigation of the IL-1beta/IL-18 processing pathway showed an elevated number of cells with inflammasomes and increased levels of NLRP3 and cleaved CASP1/Caspase1 in Becn1+/- microglia. Super-resolation microscopy revealed a very close association of NLRP3 aggregates and LC3-positive vesicles. Interestingly, CALCOCO2 colocalized with NLRP3 and its downregulation increased IL-1beta release. These data support the notion that selective autophagy can impact microglia activation by modulating IL-1beta and IL-18 production via NLRP3 degradation and thus present a mechanism how impaired autophagy could contribute to neuroinflammation in Alzheimer's disease.


Assuntos
Autofagia , Proteína Beclina-1/fisiologia , Inflamação/imunologia , Microglia/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Placa Amiloide/imunologia , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/fisiologia , Animais , Autofagossomos , Citocinas/metabolismo , Feminino , Inflamassomos , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Presenilina-1/fisiologia
8.
J Neuroinflammation ; 20(1): 30, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759861

RESUMO

Patients with COVID-19 can have a variety of neurological symptoms, but the active involvement of central nervous system (CNS) in COVID-19 remains unclear. While routine cerebrospinal fluid (CSF) analyses in patients with neurological manifestations of COVID-19 generally show no or only mild inflammation, more detailed data on inflammatory mediators in the CSF of patients with COVID-19 are scarce. We studied the inflammatory response in paired CSF and serum samples of patients with COVID-19 (n = 38). Patients with herpes simplex virus encephalitis (HSVE, n = 10) and patients with non-inflammatory, non-neurodegenerative neurological diseases (n = 28) served as controls. We used proteomics, enzyme-linked immunoassays, and semiquantitative cytokine arrays to characterize inflammatory proteins. Autoantibody screening was performed with cell-based assays and native tissue staining. RNA sequencing of long-non-coding RNA and circular RNA was done to study the transcriptome. Proteomics on single protein level and subsequent pathway analysis showed similar yet strongly attenuated inflammatory changes in the CSF of COVID-19 patients compared to HSVE patients with, e.g., downregulation of the apolipoproteins and extracellular matrix proteins. Protein upregulation of the complement system, the serpin proteins pathways, and other proteins including glycoproteins alpha-2 and alpha-1 acid. Importantly, calculation of interleukin-6, interleukin-16, and CXCL10 CSF/serum indices suggest that these inflammatory mediators reach the CSF from the systemic circulation, rather than being produced within the CNS. Antibody screening revealed no pathological levels of known neuronal autoantibodies. When stratifying COVID-19 patients into those with and without bacterial superinfection as indicated by elevated procalcitonin levels, inflammatory markers were significantly (p < 0.01) higher in those with bacterial superinfection. RNA sequencing in the CSF revealed 101 linear RNAs comprising messenger RNAs, and two circRNAs being significantly differentially expressed in COVID-19 than in non-neuroinflammatory controls and neurodegenerative patients. Our findings may explain the absence of signs of intrathecal inflammation upon routine CSF testing despite the presence of SARS-CoV2 infection-associated neurological symptoms. The relevance of blood-derived mediators of inflammation in the CSF for neurological COVID-19 and post-COVID-19 symptoms deserves further investigation.


Assuntos
COVID-19 , Encefalite por Herpes Simples , Superinfecção , Humanos , Proteoma/metabolismo , RNA Viral/metabolismo , Superinfecção/metabolismo , SARS-CoV-2 , Encéfalo/metabolismo , Inflamação/metabolismo , Encefalite por Herpes Simples/líquido cefalorraquidiano , Mediadores da Inflamação/metabolismo
9.
Neuropathol Appl Neurobiol ; 49(1): e12866, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36519297

RESUMO

AIM: Analysis of cerebrospinal fluid (CSF) is essential for diagnostic workup of patients with neurological diseases and includes differential cell typing. The current gold standard is based on microscopic examination by specialised technicians and neuropathologists, which is time-consuming, labour-intensive and subjective. METHODS: We, therefore, developed an image analysis approach based on expert annotations of 123,181 digitised CSF objects from 78 patients corresponding to 15 clinically relevant categories and trained a multiclass convolutional neural network (CNN). RESULTS: The CNN classified the 15 categories with high accuracy (mean AUC 97.3%). By using explainable artificial intelligence (XAI), we demonstrate that the CNN identified meaningful cellular substructures in CSF cells recapitulating human pattern recognition. Based on the evaluation of 511 cells selected from 12 different CSF samples, we validated the CNN by comparing it with seven board-certified neuropathologists blinded for clinical information. Inter-rater agreement between the CNN and the ground truth was non-inferior (Krippendorff's alpha 0.79) compared with the agreement of seven human raters and the ground truth (mean Krippendorff's alpha 0.72, range 0.56-0.81). The CNN assigned the correct diagnostic label (inflammatory, haemorrhagic or neoplastic) in 10 out of 11 clinical samples, compared with 7-11 out of 11 by human raters. CONCLUSIONS: Our approach provides the basis to overcome current limitations in automated cell classification for routine diagnostics and demonstrates how a visual explanation framework can connect machine decision-making with cell properties and thus provide a novel versatile and quantitative method for investigating CSF manifestations of various neurological diseases.


Assuntos
Aprendizado Profundo , Humanos , Inteligência Artificial , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos
10.
Neuropathol Appl Neurobiol ; 49(1): e12856, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36269599

RESUMO

BACKGROUND: DNA methylation-based classification of cancer provides a comprehensive molecular approach to diagnose tumours. In fact, DNA methylation profiling of human brain tumours already profoundly impacts clinical neuro-oncology. However, current implementation using hybridisation microarrays is time consuming and costly. We recently reported on shallow nanopore whole-genome sequencing for rapid and cost-effective generation of genome-wide 5-methylcytosine profiles as input to supervised classification. Here, we demonstrate that this approach allows us to discriminate a wide spectrum of primary brain tumours. RESULTS: Using public reference data of 82 distinct tumour entities, we performed nanopore genome sequencing on 382 tissue samples covering 46 brain tumour (sub)types. Using bootstrap sampling in a cohort of 55 cases, we found that a minimum set of 1000 random CpG features is sufficient for high-confidence classification by ad hoc random forests. We implemented score recalibration as a confidence measure for interpretation in a clinical context and empirically determined a platform-specific threshold in a randomly sampled discovery cohort (N = 185). Applying this cut-off to an independent validation series (n = 184) yielded 148 classifiable cases (sensitivity 80.4%) and demonstrated 100% specificity. Cross-lab validation demonstrated robustness with concordant results across four laboratories in 10/11 (90.9%) cases. In a prospective benchmarking (N = 15), the median time to results was 21.1 h. CONCLUSIONS: In conclusion, nanopore sequencing allows robust and rapid methylation-based classification across the full spectrum of brain tumours. Platform-specific confidence scores facilitate clinical implementation for which prospective evaluation is warranted and ongoing.


Assuntos
Neoplasias Encefálicas , Sequenciamento por Nanoporos , Humanos , Metilação de DNA , Neoplasias Encefálicas/patologia , Genoma
11.
Eur Respir J ; 60(6)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35728978

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilises the angiotensin-converting enzyme 2 (ACE2) transmembrane peptidase as cellular entry receptor. However, whether SARS-CoV-2 in the alveolar compartment is strictly ACE2-dependent and to what extent virus-induced tissue damage and/or direct immune activation determines early pathogenesis is still elusive. METHODS: Spectral microscopy, single-cell/-nucleus RNA sequencing or ACE2 "gain-of-function" experiments were applied to infected human lung explants and adult stem cell derived human lung organoids to correlate ACE2 and related host factors with SARS-CoV-2 tropism, propagation, virulence and immune activation compared to SARS-CoV, influenza and Middle East respiratory syndrome coronavirus (MERS-CoV). Coronavirus disease 2019 (COVID-19) autopsy material was used to validate ex vivo results. RESULTS: We provide evidence that alveolar ACE2 expression must be considered scarce, thereby limiting SARS-CoV-2 propagation and virus-induced tissue damage in the human alveolus. Instead, ex vivo infected human lungs and COVID-19 autopsy samples showed that alveolar macrophages were frequently positive for SARS-CoV-2. Single-cell/-nucleus transcriptomics further revealed nonproductive virus uptake and a related inflammatory and anti-viral activation, especially in "inflammatory alveolar macrophages", comparable to those induced by SARS-CoV and MERS-CoV, but different from NL63 or influenza virus infection. CONCLUSIONS: Collectively, our findings indicate that severe lung injury in COVID-19 probably results from a macrophage-triggered immune activation rather than direct viral damage of the alveolar compartment.


Assuntos
COVID-19 , Influenza Humana , Adulto , Humanos , Enzima de Conversão de Angiotensina 2 , Pulmão/patologia , Macrófagos Alveolares/metabolismo , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Tropismo Viral
12.
J Neuroinflammation ; 19(1): 172, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35780157

RESUMO

BACKGROUND: Deposition of amyloid beta (Aß) and hyperphosphorylated tau along with glial cell-mediated neuroinflammation are prominent pathogenic hallmarks of Alzheimer's disease (AD). In recent years, impairment of autophagy has been identified as another important feature contributing to AD progression. Therefore, the potential of the autophagy activator spermidine, a small body-endogenous polyamine often used as dietary supplement, was assessed on Aß pathology and glial cell-mediated neuroinflammation. RESULTS: Oral treatment of the amyloid prone AD-like APPPS1 mice with spermidine reduced neurotoxic soluble Aß and decreased AD-associated neuroinflammation. Mechanistically, single nuclei sequencing revealed AD-associated microglia to be the main target of spermidine. This microglia population was characterized by increased AXL levels and expression of genes implicated in cell migration and phagocytosis. A subsequent proteome analysis of isolated microglia confirmed the anti-inflammatory and cytoskeletal effects of spermidine in APPPS1 mice. In primary microglia and astrocytes, spermidine-induced autophagy subsequently affected TLR3- and TLR4-mediated inflammatory processes, phagocytosis of Aß and motility. Interestingly, spermidine regulated the neuroinflammatory response of microglia beyond transcriptional control by interfering with the assembly of the inflammasome. CONCLUSIONS: Our data highlight that the autophagy activator spermidine holds the potential to enhance Aß degradation and to counteract glia-mediated neuroinflammation in AD pathology.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Espermidina , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Doenças Neuroinflamatórias/tratamento farmacológico , Espermidina/farmacologia , Espermidina/uso terapêutico
14.
EMBO Rep ; 21(3): e48530, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32003148

RESUMO

Pathological aggregation of amyloid-ß (Aß) is a main hallmark of Alzheimer's disease (AD). Recent genetic association studies have linked innate immune system actions to AD development, and current evidence suggests profound gender differences in AD pathogenesis. Here, we characterise gender-specific pathologies in the APP23 AD-like mouse model and find that female mice show stronger amyloidosis and astrogliosis compared with male mice. We tested the gender-specific effect of lack of IL12p40, the shared subunit of interleukin (IL)-12 and IL-23, that we previously reported to ameliorate pathology in APPPS1 mice. IL12p40 deficiency gender specifically reduces Aß plaque burden in male APP23 mice, while in female mice, a significant reduction in soluble Aß1-40 without changes in Aß plaque burden is seen. Similarly, plasma and brain cytokine levels are altered differently in female versus male APP23 mice lacking IL12p40, while glial properties are unchanged. These data corroborate the therapeutic potential of targeting IL-12/IL-23 signalling in AD, but also highlight the importance of gender considerations when studying the role of the immune system and AD.


Assuntos
Doença de Alzheimer , Interleucina-12/deficiência , Subunidade p19 da Interleucina-23/deficiência , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Interleucina-12/genética , Subunidade p40 da Interleucina-12/deficiência , Subunidade p40 da Interleucina-12/genética , Subunidade p19 da Interleucina-23/genética , Masculino , Camundongos , Camundongos Transgênicos , Placa Amiloide
15.
Neuropathol Appl Neurobiol ; 47(6): 756-767, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34091929

RESUMO

AIMS: Although inactivation of the von Hippel-Lindau gene (VHL) on chromosome 3p25 is considered to be the major cause of hereditary endolymphatic sac tumours (ELSTs), the genetic background of sporadic ELST is largely unknown. The aim of this study was to determine the prevalence of VHL mutations in sporadic ELSTs and compare their characteristics to VHL-disease-related tumours. METHODS: Genetic and epigenetic alterations were compared between 11 sporadic and 11 VHL-disease-related ELSTs by targeted sequencing and DNA methylation analysis. RESULTS: VHL mutations and small deletions detected by targeted deep sequencing were identified in 9/11 sporadic ELSTs (82%). No other cancer-related genetic pathway was altered except for TERT promoter mutations in two sporadic ELST and one VHL-disease-related ELST (15%). Loss of heterozygosity of chromosome 3 was found in 6/10 (60%) VHL-disease-related and 10/11 (91%) sporadic ELSTs resulting in biallelic VHL inactivation in 8/10 (73%) sporadic ELSTs. DNA methylation profiling did not reveal differences between sporadic and VHL-disease-related ELSTs but reliably distinguished ELST from morphological mimics of the cerebellopontine angle. VHL patients were significantly younger at disease onset compared to sporadic ELSTs (29 vs. 52 years, p < 0.0001, Fisher's exact test). VHL-disease status was not associated with an increased risk of recurrence, but the presence of clear cells was found to be associated with shorter progression-free survival (p = 0.0002, log-rank test). CONCLUSION: Biallelic inactivation of VHL is the main mechanism underlying ELSTs, but unknown mechanisms beyond VHL may rarely be involved in the pathogenesis of sporadic ELSTs.


Assuntos
Neoplasias da Orelha/patologia , Saco Endolinfático/patologia , Proteínas Supressoras de Tumor/metabolismo , Doença de von Hippel-Lindau/patologia , Adulto , Neoplasias da Orelha/complicações , Neoplasias da Orelha/genética , Saco Endolinfático/metabolismo , Humanos , Pessoa de Meia-Idade , Mutação/genética , Risco , Proteínas Supressoras de Tumor/genética , Doença de von Hippel-Lindau/complicações , Doença de von Hippel-Lindau/genética
16.
Acta Neuropathol ; 141(6): 959-970, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33755803

RESUMO

Subependymomas are benign tumors characteristically encountered in the posterior fossa of adults that show distinct epigenetic profiles assigned to the molecular group "subependymoma, posterior fossa" (PFSE) of the recently established DNA methylation-based classification of central nervous system tumors. In contrast, most posterior fossa ependymomas exhibit a more aggressive biological behavior and are allocated to the molecular subgroups PFA or PFB. A subset of ependymomas shows epigenetic similarities with subependymomas, but the precise biology of these tumors and their potential relationships remain unknown. We therefore set out to characterize epigenetic traits, mutational profiles, and clinical outcomes of 50 posterior fossa ependymal tumors of the PFSE group. On histo-morphology, these tumors comprised 12 ependymomas, 14 subependymomas and 24 tumors with mixed ependymoma-subependymoma morphology. Mixed ependymoma-subependymoma tumors varied in their extent of ependymoma differentiation (2-95%) but consistently exhibited global epigenetic profiles of the PFSE group. Selective methylome analysis of microdissected tumor components revealed CpG signatures in mixed tumors that coalesce with their pure counterparts. Loss of chr6 (20/50 cases), as well as TERT mutations (21/50 cases), were frequent events enriched in tumors with pure ependymoma morphology (p < 0.001) and confined to areas with ependymoma differentiation in mixed tumors. Clinically, pure ependymoma phenotype, chr6 loss, and TERT mutations were associated with shorter progression-free survival (each p < 0.001). In conclusion, our results suggest that subependymomas may acquire genetic and epigenetic changes throughout tumor evolution giving rise to subclones with ependymoma morphology (resulting in mixed tumors) that eventually overpopulate the subependymoma component (pure PFSE ependymomas).


Assuntos
Cromossomos Humanos Par 6/genética , Ependimoma/classificação , Ependimoma/genética , Neoplasias Infratentoriais/genética , Neoplasias Infratentoriais/patologia , Mutação , Regiões Promotoras Genéticas/genética , Telomerase/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Metilação de DNA , Ependimoma/patologia , Feminino , Técnicas Genéticas , Humanos , Neoplasias Infratentoriais/classificação , Masculino , Pessoa de Meia-Idade , Intervalo Livre de Progressão
17.
Microsc Microanal ; 27(4): 815-827, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34266508

RESUMO

Manual selection of targets in experimental or diagnostic samples by transmission electron microscopy (TEM), based on single overview and detail micrographs, has been time-consuming and susceptible to bias. Substantial information and throughput gain may now be achieved by the automated acquisition of virtually all structures in a given EM section. Resulting datasets allow the convenient pan-and-zoom examination of tissue ultrastructure with preserved microanatomical orientation. The technique is, however, critically sensitive to artifacts in sample preparation. We, therefore, established a methodology to prepare large-scale digitization samples (LDS) designed to acquire entire sections free of obscuring flaws. For evaluation, we highlight the supreme performance of scanning EM in transmission mode compared with other EM technology. The use of LDS will substantially facilitate access to EM data for a broad range of applications.


Assuntos
Microscopia Eletrônica de Varredura , Manejo de Espécimes , Células , Microscopia Eletrônica de Transmissão
18.
Acta Neuropathol ; 140(6): 893-906, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32926213

RESUMO

Paragangliomas/pheochromocytomas are rare neuroendocrine tumors that arise from the adrenal gland or ganglia at various sites throughout the body. They display a remarkable diversity of driver alterations and are associated with germline mutations in up to 40% of the cases. Comprehensive molecular profiling of abdomino-thoracic paragangliomas revealed four molecularly defined and clinically relevant subtypes. Paragangliomas of the cauda equina region are considered to belong to one of the defined molecular subtypes, but a systematic molecular analysis has not yet been performed. In this study, we analyzed genome-wide DNA methylation profiles of 57 cauda equina paragangliomas and show that these tumors are epigenetically distinct from non-spinal paragangliomas and other tumors. In contrast to paragangliomas of other sites, chromosomal imbalances are widely lacking in cauda equina paragangliomas. Furthermore, RNA and DNA exome sequencing revealed that frequent genetic alterations found in non-spinal paragangliomas-including the prognostically relevant SDH mutations-are absent in cauda equina paragangliomas. Histologically, cauda equina paragangliomas show frequently gangliocytic differentiation and strong immunoreactivity to pan-cytokeratin and cytokeratin 18, which is not common in paragangliomas of other sites. None of our cases had a familial paraganglioma syndrome. Tumors rarely recurred (9%) or presented with multiple lesions within the spinal compartment (7%), but did not metastasize outside the CNS. In summary, we show that cauda equina paragangliomas represent a distinct, sporadic tumor entity defined by a unique clinical and morpho-molecular profile.


Assuntos
Cauda Equina/patologia , Neoplasias do Sistema Nervoso Central/patologia , Tumores Neuroendócrinos/patologia , Paraganglioma/genética , Paraganglioma/patologia , Neoplasias do Sistema Nervoso Central/genética , Diagnóstico Diferencial , Feminino , Mutação em Linhagem Germinativa/genética , Humanos , Masculino , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Tumores Neuroendócrinos/diagnóstico , Tumores Neuroendócrinos/genética , Prognóstico
19.
Nat Rev Neurosci ; 16(6): 358-72, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25991443

RESUMO

The past two decades of research into the pathogenesis of Alzheimer disease (AD) have been driven largely by the amyloid hypothesis; the neuroinflammation that is associated with AD has been assumed to be merely a response to pathophysiological events. However, new data from preclinical and clinical studies have established that immune system-mediated actions in fact contribute to and drive AD pathogenesis. These insights have suggested both novel and well-defined potential therapeutic targets for AD, including microglia and several cytokines. In addition, as inflammation in AD primarily concerns the innate immune system - unlike in 'typical' neuroinflammatory diseases such as multiple sclerosis and encephalitides - the concept of neuroinflammation in AD may need refinement.


Assuntos
Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Inflamação/imunologia , Inflamação/patologia , Animais , Humanos
20.
Int J Mol Sci ; 21(11)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545380

RESUMO

Glioblastoma (GBM) present with an abundant and aberrant tumor neo-vasculature. While rapid growth of solid tumors depends on the initiation of tumor angiogenesis, GBM also progress by infiltrative growth and vascular co-option. The angiogenic factor apelin (APLN) and its receptor (APLNR) are upregulated in GBM patient samples as compared to normal brain tissue. Here, we studied the role of apelin/APLNR signaling in GBM angiogenesis and growth. By functional analysis of apelin in orthotopic GBM mouse models, we found that apelin/APLNR signaling is required for in vivo tumor angiogenesis. Knockdown of tumor cell-derived APLN massively reduced the tumor vasculature. Additional loss of the apelin signal in endothelial tip cells using the APLN-knockout (KO) mouse led to a further reduction of GBM angiogenesis. Direct infusion of the bioactive peptide apelin-13 rescued the vascular loss-of-function phenotype specifically. In addition, APLN depletion massively reduced angiogenesis-dependent tumor growth. Consequently, survival of GBM-bearing mice was significantly increased when APLN expression was missing in the brain tumor microenvironment. Thus, we suggest that targeting vascular apelin may serve as an alternative strategy for anti-angiogenesis in GBM.


Assuntos
Apelina/metabolismo , Neoplasias Encefálicas/irrigação sanguínea , Glioblastoma/irrigação sanguínea , Neovascularização Patológica/patologia , Animais , Apelina/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/mortalidade , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Glioblastoma/mortalidade , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Imageamento por Ressonância Magnética , Camundongos Knockout , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/mortalidade , Neovascularização Patológica/metabolismo , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA