Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 90(5): 3140-3148, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29327915

RESUMO

Atomic force microscopy-infrared (AFM-IR) spectroscopy is a powerful new technique that can be applied to study molecular composition of cells and tissues at the nanoscale. AFM-IR maps are acquired using a single wavenumber value: they show either the absorbance plotted against a single wavenumber value or a ratio of two absorbance values. Here, we implement multivariate image analysis to generate multivariate AFM-IR maps and use this approach to resolve subcellular structural information in red blood cells infected with Plasmodium falciparum at different stages of development. This was achieved by converting the discrete spectral points into a multispectral line spectrum prior to multivariate image reconstruction. The approach was used to generate compositional maps of subcellular structures in the parasites, including the food vacuole, lipid inclusions, and the nucleus, on the basis of the intensity of hemozoin, hemoglobin, lipid, and DNA IR marker bands, respectively. Confocal Raman spectroscopy was used to validate the presence of hemozoin in the regions identified by the AFM-IR technique. The high spatial resolution of AFM-IR combined with hyperspectral modeling enables the direct detection of subcellular components, without the need for cell sectioning or immunological/biochemical staining. Multispectral-AFM-IR thus has the capacity to probe the phenotype of the malaria parasite during its intraerythrocytic development. This enables novel approaches to studying the mode of action of antimalarial drugs and the phenotypes of drug-resistant parasites, thus contributing to the development of diagnostic and control measures.


Assuntos
Eritrócitos/metabolismo , Microscopia de Força Atômica/métodos , Plasmodium falciparum/metabolismo , Espectrofotometria Infravermelho/métodos , Eritrócitos/parasitologia , Hemeproteínas/análise , Microscopia Confocal/métodos , Plasmodium falciparum/química , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/ultraestrutura , Análise Espectral Raman/métodos
2.
Analyst ; 140(7): 2066-73, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25610920

RESUMO

Although the potential of vibrational spectroscopy for biomedical applications has been well demonstrated, translation into clinical practice has been relatively slow. This Editorial assesses the challenges facing the field and the potential way forward. While many technological challenges have been addressed to date, considerable effort is still required to gain acceptance of the techniques among the medical community, standardise protocols, extend to a clinically relevant scale, and ultimately assess the health economics underlying clinical deployment. National and international research networks can contribute much to technology development and standardisation. Ultimately, large-scale funding is required to engage in clinical trials and instrument development.


Assuntos
Patologia/métodos , Análise Espectral/métodos , Animais , Líquidos Corporais/citologia , Técnicas de Cultura de Células , Doença , Humanos , Pesquisa Translacional Biomédica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA