RESUMO
Our understanding of the biological role of the ßc family of cytokines has evolved enormously since their initial identification as bone marrow colony stimulating factors in the 1960's. It has become abundantly clear over the intervening decades that this family of cytokines has truly astonishing pleiotropic capacity, capable of regulating not only hematopoiesis but also many other normal and pathological processes such as development, inflammation, allergy and cancer. As noted in the current pandemic, ßc cytokines contribute to the cytokine storm seen in acutely ill COVID-19 patients. Ongoing studies to discover how these cytokines activate their receptor are revealing insights into the fundamental mechanisms that give rise to cytokine pleiotropy and are providing tantalizing glimpses of how discrete signaling pathways may be dissected for activation with novel ligands for therapeutic benefit.
Assuntos
COVID-19 , Objetivos , Humanos , SARS-CoV-2RESUMO
BACKGROUND: Patients with severe asthma can present with eosinophilic type 2 (T2), neutrophilic, or mixed inflammation that drives airway remodeling and exacerbations and represents a major treatment challenge. The common ß (ßc) receptor signals for 3 cytokines, GM-CSF, IL-5, and IL-3, which collectively mediate T2 and neutrophilic inflammation. OBJECTIVE: To determine the pathogenesis of ßc receptor-mediated inflammation and remodeling in severe asthma and to investigate ßc antagonism as a therapeutic strategy for mixed granulocytic airway disease. METHODS: ßc gene expression was analyzed in bronchial biopsy specimens from patients with mild-to-moderate and severe asthma. House dust mite extract and Aspergillus fumigatus extract (ASP) models were used to establish asthma-like pathology and airway remodeling in human ßc transgenic mice. Lung tissue gene expression was analyzed by RNA sequencing. The mAb CSL311 targeting the shared cytokine binding site of ßc was used to block ßc signaling. RESULTS: ßc gene expression was increased in patients with severe asthma. CSL311 potently reduced lung neutrophils, eosinophils, and interstitial macrophages and improved airway pathology and lung function in the acute steroid-resistant house dust mite extract model. Chronic intranasal ASP exposure induced airway inflammation and fibrosis and impaired lung function that was inhibited by CSL311. CSL311 normalized the ASP-induced fibrosis-associated extracellular matrix gene expression network and strongly reduced signatures of cellular inflammation in the lung. CONCLUSIONS: ßc cytokines drive steroid-resistant mixed myeloid cell airway inflammation and fibrosis. The anti-ßc antibody CSL311 effectively inhibits mixed T2/neutrophilic inflammation and severe asthma-like pathology and reverses fibrosis gene signatures induced by exposure to commonly encountered environmental allergens.
Assuntos
Asma , Receptores de Citocinas , Camundongos , Animais , Humanos , Receptores de Citocinas/metabolismo , Remodelação das Vias Aéreas , Pulmão , Citocinas/metabolismo , Camundongos Transgênicos , Inflamação , Alérgenos , Esteroides/uso terapêutico , Fibrose , PyroglyphidaeRESUMO
The family of cytokines that comprises IL-3, IL-5, and GM-CSF was discovered over 30 years ago, and their biological activities and resulting impact in clinical medicine has continued to expand ever since. Originally identified as bone marrow growth factors capable of acting on hemopoietic progenitor cells to induce their proliferation and differentiation into mature blood cells, these cytokines are also recognized as key mediators of inflammation and the pathobiology of diverse immunologic diseases. This increased understanding of the functional repertoire of IL-3, IL-5, and GM-CSF has led to an explosion of interest in modulating their functions for clinical management. Key to the successful clinical translation of this knowledge is the recognition that these cytokines act by engaging distinct dimeric receptors and that they share a common signaling subunit called ß-common or ßc. The structural determination of how IL-3, IL-5, and GM-CSF interact with their receptors and linking this to their differential biological functions on effector cells has unveiled new paradigms of cell signaling. This knowledge has paved the way for novel mAbs and other molecules as selective or pan inhibitors for use in different clinical settings.
Assuntos
Medicina Clínica , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Humanos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Citocinas/metabolismo , Interleucina-3/metabolismo , Interleucina-5/metabolismo , Eosinófilos , BiologiaRESUMO
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that controls the production and function of blood cells, is deregulated in clinical conditions such as rheumatoid arthritis and leukemia, yet offers therapeutic value for other diseases. Its receptors are heterodimers consisting of a ligand-specific alpha subunit and a betac subunit that is shared with the interleukin (IL)-3 and IL-5 receptors. How signaling is initiated remains an enigma. We report here the crystal structure of the human GM-CSF/GM-CSF receptor ternary complex and its assembly into an unexpected dodecamer or higher-order complex. Importantly, mutagenesis of the GM-CSF receptor at the dodecamer interface and functional studies reveal that dodecamer formation is required for receptor activation and signaling. This unusual form of receptor assembly likely applies also to IL-3 and IL-5 receptors, providing a structural basis for understanding their mechanism of activation and for the development of therapeutics.
Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/química , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/química , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Sequência de Aminoácidos , Cristalografia , Humanos , Modelos Moleculares , Dados de Sequência MolecularRESUMO
The origin of pathogenic autoantibodies remains unknown. Idiopathic pulmonary alveolar proteinosis is caused by autoantibodies against granulocyte-macrophage colony-stimulating factor (GM-CSF). We generated 19 monoclonal autoantibodies against GM-CSF from six patients with idiopathic pulmonary alveolar proteinosis. The autoantibodies used multiple V genes, excluding preferred V-gene use as an etiology, and targeted at least four nonoverlapping epitopes on GM-CSF, suggesting that GM-CSF is driving the autoantibodies and not a B-cell epitope on a pathogen cross-reacting with GM-CSF. The number of somatic mutations in the autoantibodies suggests that the memory B cells have been helped by T cells and re-entered germinal centers. All autoantibodies neutralized GM-CSF bioactivity, with general correlations to affinity and off-rate. The binding of certain autoantibodies was changed by point mutations in GM-CSF that reduced binding to the GM-CSF receptor. Those monoclonal autoantibodies that potently neutralize GM-CSF may be useful in treating inflammatory disease, such as rheumatoid arthritis and multiple sclerosis, cancer, and pain.
Assuntos
Anticorpos Monoclonais/imunologia , Autoanticorpos/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Proteinose Alveolar Pulmonar/imunologia , Linfócitos B/citologia , Antígeno CD11b/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Mapeamento de Epitopos/métodos , Humanos , Memória Imunológica , Concentração Inibidora 50 , Cinética , Mutação , Neutrófilos/metabolismo , Mutação Puntual , Proteinose Alveolar Pulmonar/metabolismo , Ressonância de Plasmônio de Superfície , Linfócitos T/citologiaRESUMO
Granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5 are members of a discrete family of cytokines that regulates the growth, differentiation, migration and effector function activities of many hematopoietic cells and immunocytes. These cytokines are involved in normal responses to infectious agents, bridging innate and adaptive immunity. However, in certain cases, the overexpression of these cytokines or their receptors can lead to excessive or aberrant initiation of signaling resulting in pathological conditions, with chronic inflammatory diseases and myeloid leukemias the most notable examples. Recent crystal structures of the GM-CSF receptor ternary complex and the IL-5 binary complex have revealed new paradigms of cytokine receptor activation. Together with a wealth of associated structure-function studies, they have significantly enhanced our understanding of how these receptors recognize cytokines and initiate signals across cell membranes. Importantly, these structures provide opportunities for structure-based approaches for the discovery of novel and disease-specific therapeutics. In addition, recent biochemical evidence has suggested that the GM-CSF/IL-3/IL-5 receptor family is capable of interacting productively with other membrane proteins at the cell surface. Such interactions may afford additional or unique biological activities and might be harnessed for selective modulation of the function of these receptors in disease.
Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/química , Interleucina-3/química , Interleucina-5/química , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/química , Receptores de Interleucina-3/química , Receptores de Interleucina-5/química , Cristalografia por Raios X , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Interleucina-3/imunologia , Interleucina-3/metabolismo , Interleucina-5/imunologia , Interleucina-5/metabolismo , Leucemia Mieloide/imunologia , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/patologia , Modelos Moleculares , Ligação Proteica , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/imunologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Receptores de Interleucina-3/imunologia , Receptores de Interleucina-3/metabolismo , Receptores de Interleucina-5/imunologia , Receptores de Interleucina-5/metabolismo , Transdução de Sinais , Relação Estrutura-AtividadeRESUMO
Granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3) and IL-5 are members of a small family of cytokines that share a beta receptor subunit (ßc). These cytokines regulate the growth, differentiation, migration and effector function activities of many hematopoietic cells in bone marrow, blood and sites of inflammation. Excessive or aberrant signaling can result in chronic inflammatory conditions and myeloid leukemias. The crystal structures of the GM-CSF ternary complex, the IL-5 binary complex and the very recent IL-3 receptor alpha subunit build upon decades of structure-function studies, giving new insights into cytokine-receptor specificity and signal transduction. Selective modulation of receptor function is now a real possibility and the structures of the ßc receptor family are being used to discover novel and disease-specific therapeutics.
Assuntos
Subunidade beta Comum dos Receptores de Citocinas , Citocinas , Transdução de Sinais/imunologia , Animais , Subunidade beta Comum dos Receptores de Citocinas/química , Subunidade beta Comum dos Receptores de Citocinas/imunologia , Citocinas/química , Citocinas/imunologia , Humanos , Estrutura Quaternária de Proteína , Relação Estrutura-AtividadeRESUMO
Leukemia stem cells (LSC) possess distinct self-renewal and arrested differentiation properties that are responsible for disease emergence, therapy failure, and recurrence in acute myeloid leukemia (AML). Despite AML displaying extensive biological and clinical heterogeneity, LSC with high interleukin-3 receptor (IL3R) levels are a constant yet puzzling feature, as this receptor lacks tyrosine kinase activity. Here, we show that the heterodimeric IL3Rα/ßc receptor assembles into hexamers and dodecamers through a unique interface in the 3D structure, where high IL3Rα/ßc ratios bias hexamer formation. Importantly, receptor stoichiometry is clinically relevant as it varies across the individual cells in the AML hierarchy, in which high IL3Rα/ßc ratios in LSCs drive hexamer-mediated stemness programs and poor patient survival, while low ratios mediate differentiation. Our study establishes a new paradigm in which alternative cytokine receptor stoichiometries differentially regulate cell fate, a signaling mechanism that may be generalizable to other transformed cellular hierarchies and of potential therapeutic significance. SIGNIFICANCE: Stemness is a hallmark of many cancers and is largely responsible for disease emergence, progression, and relapse. Our finding that clinically significant stemness programs in AML are directly regulated by different stoichiometries of cytokine receptors represents a hitherto unexplained mechanism underlying cell-fate decisions in cancer stem cell hierarchies. This article is highlighted in the In This Issue feature, p. 1749.
Assuntos
Leucemia Mieloide Aguda , Receptores de Citocinas , Humanos , Receptores de Citocinas/uso terapêutico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Fosforilação , Transdução de Sinais , Proliferação de Células , Células-Tronco NeoplásicasRESUMO
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pluripotent cytokine produced by many cells in the body, which regulates normal and malignant hemopoiesis as well as innate and adaptive immunity. GM-CSF assembles and activates its heterodimeric receptor complex on the surface of myeloid cells, initiating multiple signaling pathways that control key functions such as cell survival, cell proliferation, and functional activation. Understanding the molecular composition of these pathways, the interaction of the various components as well as the kinetics and dose-dependent mechanics of receptor activation provides valuable insights into the function of GM-CSF as well as the related cytokines, interleukin-3 and interleukin-5. This knowledge provides opportunities for the development of new therapies to block the action of these cytokines in hematological malignancy and chronic inflammation.
Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Neoplasias Hematológicas/metabolismo , Inflamação/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Doença Crônica , Neoplasias Hematológicas/patologia , Humanos , Inflamação/patologia , Células Mieloides/metabolismo , Células Mieloides/patologia , Transdução de SinaisRESUMO
Granulocyte/macrophage colony-stimulating factor promotes growth, survival, differentiation, and activation of normal myeloid cells and plays an important role in myeloid leukemias. The GM-CSF receptor (GMR) shares a signaling subunit, beta(c), with interleukin-3 and interleukin-5 receptors and has recently been shown to induce activation of Janus kinase 2 (JAK2) and downstream signaling via formation of a unique dodecameric receptor complex. In this study we use 2 activated beta(c) mutants that display distinct signaling capacity and have differential requirements for the GMR alpha-subunit (GMR-alpha) to dissect the signaling pathways associated with the GM-CSF response. The V449E transmembrane mutant selectively activates JAK2/signal transducer and activator of transcription 5 and extracellular signal-regulated kinase (ERK) pathways, resulting in a high level of sensitivity to JAK and ERK inhibitors, whereas the extracellular mutant (FIDelta) selectively activates the phosphoinositide 3-kinase/Akt and IkappaKbeta/nuclear factorkappaB pathways. We also demonstrate a novel and direct interaction between the SH3 domains of Lyn and Src with a conserved proline-rich motif in GMR-alpha and show a selective requirement for Src family kinases by the FIDelta mutant. We relate the nonoverlapping nature of signaling by the activated mutants to the structure of the unique GMR complex and propose alternative modes of receptor activation acting synergistically in the mature liganded receptor complex.
Assuntos
Ativação Enzimática/fisiologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Transdução de Sinais/fisiologia , Animais , Western Blotting , Linhagem Celular , Citometria de Fluxo , Imunoprecipitação , Leucemia Mieloide Aguda/metabolismo , Camundongos , Microscopia de Fluorescência , MutaçãoRESUMO
Acute respiratory distress syndrome (ARDS) is triggered by various aetiological factors such as trauma, sepsis and respiratory viruses including SARS-CoV-2 and influenza A virus. Immune profiling of severe COVID-19 patients has identified a complex pattern of cytokines including granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin (IL)-5, which are significant mediators of viral-induced hyperinflammation. This strong response has prompted the development of therapies that block GM-CSF and other cytokines individually to limit inflammation related pathology. The common cytokine binding site of the human common beta (ßc) receptor signals for three inflammatory cytokines: GM-CSF, IL-5 and IL-3. In this study, ßc was targeted with the monoclonal antibody (mAb) CSL311 in engineered mice devoid of mouse ßc and ßIL-3 and expressing human ßc (hßcTg mice). Direct pulmonary administration of lipopolysaccharide (LPS) caused ARDS-like lung injury, and CSL311 markedly reduced lung inflammation and oedema, resulting in improved oxygen saturation levels in hßcTg mice. In a separate model, influenza (HKx31) lung infection caused viral pneumonia associated with a large influx of myeloid cells into the lungs of hßcTg mice. The therapeutic application of CSL311 potently decreased accumulation of monocytes/macrophages, neutrophils, and eosinophils without altering lung viral loads. Furthermore, CSL311 treatment did not limit the viral-induced expansion of NK and NKT cells, or the tissue expression of type I/II/III interferons needed for efficient viral clearance. Simultaneously blocking GM-CSF, IL-5 and IL-3 signalling with CSL311 may represent an improved and clinically applicable strategy to reducing hyperinflammation in the ARDS setting.
Assuntos
Subunidade beta Comum dos Receptores de Citocinas/genética , Subunidade beta Comum dos Receptores de Citocinas/fisiologia , Síndrome do Desconforto Respiratório/imunologia , Animais , Anticorpos Monoclonais/imunologia , Subunidade beta Comum dos Receptores de Citocinas/imunologia , Citocinas , Eosinófilos/imunologia , Feminino , Humanos , Imunidade/genética , Imunidade/fisiologia , Inflamação/imunologia , Leucócitos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neutrófilos/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Receptores de Interleucina-3 , Receptores de Interleucina-5 , Síndrome do Desconforto Respiratório/fisiopatologiaRESUMO
Allergic contact dermatitis (ACD) is a prevalent and poorly controlled inflammatory disease caused by skin infiltration of T cells and granulocytes. The beta common (ßc) cytokines GM-CSF, IL-3, and IL-5 are powerful regulators of granulocyte function that signal through their common receptor subunit ßc, a property that has made ßc an attractive target to simultaneously inhibit these cytokines. However, the species specificity of ßc has precluded testing of inhibitors of human ßc in mouse models. To overcome this problem, we developed a human ßc receptor transgenic mouse strain with a hematopoietic cellâspecific expression of human ßc instead of mouse ßc. Human ßc receptor transgenic cells responded to mouse GM-CSF and IL-5 but not to IL-3 in vitro and developed tissue pathology and cellular inflammation comparable with those in wild-type mice in a model of ACD. Similarly, Il3-/- mice developed ACD pathology comparable with that of wild-type mice. Importantly, the blocking anti-human ßc antibody CSL311 strongly suppressed ear pinna thickening and histopathological changes typical of ACD and reduced accumulation of neutrophils, mast cells, and eosinophils in the skin. These results show that GM-CSF and IL-5 but not IL-3 are major mediators of ACD and define the human ßc receptor transgenic mouse as a unique platform to test the inhibitors of ßc in vivo.
Assuntos
Dermatite de Contato , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Animais , Citocinas , Eosinófilos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Interleucina-3/metabolismo , Interleucina-5/metabolismo , Camundongos , Camundongos TransgênicosRESUMO
Already 20 years have passed since the cloning of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor alpha-chain, the first member of the GM-CSF/interleukin (IL)-3/IL-5 family of hemopoietic cytokine receptors to be molecularly characterized. The intervening 2 decades have uncovered a plethora of biologic functions transduced by the GM-CSF receptor (pleiotropy) and revealed distinct signaling networks that couple the receptor to biologic outcomes. Unlike other hemopoietin receptors, the GM-CSF receptor has a significant nonredundant role in myeloid hematologic malignancies, macrophage-mediated acute and chronic inflammation, pulmonary homeostasis, and allergic disease. The molecular mechanisms underlying GM-CSF receptor activation have recently been revealed by the crystal structure of the GM-CSF receptor complexed to GM-CSF, which shows an unexpected higher order assembly. Emerging evidence also suggests the existence of intracellular signosomes that are recruited in a concentration-dependent fashion to selectively control cell survival, proliferation, and differentiation by GM-CSF. These findings begin to unravel the mystery of cytokine receptor pleiotropy and are likely to also apply to the related IL-3 and IL-5 receptors as well as other heterodimeric cytokine receptors. The new insights in GM-CSF receptor activation have clinical significance as the structural and signaling nuances can be harnessed for the development of new treatments for malignant and inflammatory diseases.
Assuntos
Hipersensibilidade/metabolismo , Leucemia Mieloide/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Transdução de Sinais , Doença Aguda , Animais , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Doença Crônica , Homeostase , Humanos , Inflamação/metabolismo , Pulmão/metabolismo , Macrófagos/metabolismo , Relação Estrutura-AtividadeRESUMO
Cytokines are secreted soluble peptides that precisely regulate multiple cellular functions. Amongst these the GM-CSF/IL-3/IL-5 family of cytokines controls whether hematopoietic cells will survive or apoptose, proliferate, differentiate, migrate, or perform effector functions such as phagocytosis or reactive oxygen species release. Their potent and pleiotropic activities are mediated through binding to high affinity membrane receptors at surprisingly low numbers per cell. Receptor binding triggers a cascade of intracellular signaling events, including reversible phosphorylation of receptor subunits and associated signaling molecules, leading to multiple biological responses, with the prevention of apoptosis or "cell survival" being a key cellular function that underpins all others. Many chronic inflammatory diseases and a number of haematological malignancies are driven by deregulated GM-CSF, IL-3, or IL-5 cytokine receptor signaling, highlighting their importance in disease. A major step in understanding how these cytokine receptors function is to elucidate their three dimensional structure and to relate this to the many signaling pathways emanating from their receptors. We have recently solved the structure of the human GM-CSF receptor complexed to GM-CSF which revealed distinct forms of receptor assembly: a hexamer that comprises two molecules each of GM-CSF, GM-CSF receptor alpha chain and GM-CSF receptor beta chain; and an unexpected dodecamer in which two hexameric complexes associate through a novel site 4. This latter form is necessary to bring JAK2 molecules sufficiently close together to enable full receptor activation. In this review we focus on the most recent insights in cytokine receptor signaling, and in receptor assembly. The stage is now set to link distinct forms of cytokine receptor assembled structures to specific forms of cytokine receptor signaling and function. Armed with this knowledge it may be possible to map distinct cytokine receptor signaling pathways from the cell surface to the cell nucleus which may themselves become new therapeutic targets.
Assuntos
Subunidade beta Comum dos Receptores de Citocinas/metabolismo , Citocinas/metabolismo , Receptores de Citocinas/metabolismo , Sobrevivência Celular/fisiologia , Humanos , Modelos Moleculares , Multimerização Proteica , Receptores de Citocinas/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Receptores de Interleucina-3/metabolismo , Receptores de Interleucina-5/metabolismo , Transdução de SinaisRESUMO
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a haemopoietic growth factor that acts though a ternary receptor signalling complex containing specific alpha (GMRalpha) and common beta (betac) receptor subunits. Human GM-CSF is encoded by the gene csf2, while the genes for GMRalpha and betac are csf2ra and csf2rb, respectively. Crystals of the ternary ectodomain complex comprising GM-CSF and the soluble extracellular regions of both the GMRalpha subunit and either betac or its glutamine-substitution mutant N346Q were obtained using the hanging-drop vapour-diffusion method. The best diffracting crystals of the ternary complex were obtained using the N346Q mutation of the betac subunit. These crystals grew using polyethylene glycol 3350 with a high concentration of proline, belonged to space group P6(3)22 and diffracted to 3.3 A resolution.
Assuntos
Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/química , Cromatografia Líquida de Alta Pressão , Cristalização , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Humanos , Conformação Proteica , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificaçãoRESUMO
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic growth factor that can stimulate a variety of cells, but its overexpression leads to excessive production and activation of granulocytes and macrophages with many pathogenic effects. This cytokine is a therapeutic target in inflammatory diseases, and several anti-GM-CSF antibodies have advanced to Phase 2 clinical trials in patients with such diseases, e.g., rheumatoid arthritis. GM-CSF is also an essential factor in preventing pulmonary alveolar proteinosis (PAP), a disease associated with GM-CSF malfunction arising most typically through the presence of GM-CSF neutralizing auto-antibodies. Understanding the mechanism of action for neutralizing antibodies that target GM-CSF is important for improving their specificity and affinity as therapeutics and, conversely, in devising strategies to reduce the effects of GM-CSF auto-antibodies in PAP. We have solved the crystal structures of human GM-CSF bound to antigen-binding fragments of two neutralizing antibodies, the human auto-antibody F1 and the mouse monoclonal antibody 4D4. Coordinates and structure factors of the crystal structures of the GM-CSF:F1 Fab and the GM-CSF:4D4 Fab complexes have been deposited in the RCSB Protein Data Bank under the accession numbers 6BFQ and 6BFS, respectively. The structures show that these antibodies bind to mutually exclusive epitopes on GM-CSF; however, both prevent the cytokine from interacting with its alpha receptor subunit and hence prevent receptor activation. Importantly, identification of the F1 epitope together with functional analyses highlighted modifications to GM-CSF that would abolish auto-antibody recognition whilst retaining GM-CSF function. These results provide a framework for developing novel GM-CSF molecules for PAP treatment and for optimizing current anti-GM-CSF antibodies for use in treating inflammatory disorders.
Assuntos
Anticorpos Neutralizantes/química , Complexo Antígeno-Anticorpo/química , Artrite Reumatoide/terapia , Autoanticorpos/química , Epitopos/química , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Imunoterapia/métodos , Anticorpos Neutralizantes/metabolismo , Artrite Reumatoide/imunologia , Autoanticorpos/metabolismo , Autoanticorpos/farmacologia , Cristalografia por Raios X , Citocinas/metabolismo , Epitopos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Humanos , Estrutura Molecular , Ligação Proteica , Conformação ProteicaRESUMO
Treatment of patients with myelofibrosis with the type I JAK (Janus kinase) inhibitor ruxolitinib paradoxically induces JAK2 activation loop phosphorylation and is associated with a life-threatening cytokine-rebound syndrome if rapidly withdrawn. We developed a time-dependent assay to mimic ruxolitinib withdrawal in primary JAK2V617F and CALR mutant myelofibrosis patient samples and observed notable activation of spontaneous STAT signaling in JAK2V617F samples after drug washout. Accumulation of ruxolitinib-induced JAK2 phosphorylation was dose dependent and correlated with rebound signaling and the presence of a JAK2V617F mutation. Ruxolitinib prevented dephosphorylation of a cryptic site involving Tyr1007/1008 in JAK2 blocking ubiquitination and degradation. In contrast, a type II JAK inhibitor, CHZ868, did not induce JAK2 phosphorylation, was not associated with withdrawal signaling, and was superior in the eradication of flow-purified JAK2V617F mutant CD34+ progenitors after drug washout. Type I inhibitor-induced loop phosphorylation may act as a pathogenic signaling node released upon drug withdrawal, especially in JAK2V617F patients.
Assuntos
Janus Quinase 2/metabolismo , Inibidores de Janus Quinases/farmacologia , Mielofibrose Primária/metabolismo , Pirazóis/farmacologia , Síndrome de Abstinência a Substâncias/patologia , Apoptose , Proliferação de Células , Humanos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/genética , Mutação , Nitrilas , Fosforilação , Mielofibrose Primária/tratamento farmacológico , Mielofibrose Primária/patologia , Pirimidinas , Transdução de Sinais , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Síndrome de Abstinência a Substâncias/metabolismo , Células Tumorais CultivadasRESUMO
The interleukin-3 (IL-3) receptor is a cell-surface heterodimer that links the haemopoietic, vascular and immune systems and is overexpressed in acute and chronic myeloid leukaemia progenitor cells. It belongs to the type I cytokine receptor family in which the α-subunits consist of two fibronectin III-like domains that bind cytokine, and a third, evolutionarily unrelated and topologically conserved, N-terminal domain (NTD) with unknown function. Here we show by crystallography that, while the NTD of IL3Rα is highly mobile in the presence of IL-3, it becomes surprisingly rigid in the presence of IL-3 K116W. Mutagenesis, biochemical and functional studies show that the NTD of IL3Rα regulates IL-3 binding and signalling and reveal an unexpected role in preventing spontaneous receptor dimerisation. Our work identifies a dual role for the NTD in this cytokine receptor family, protecting against inappropriate signalling and dynamically regulating cytokine receptor binding and function.
Assuntos
Subunidade alfa de Receptor de Interleucina-3/química , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Domínios Proteicos , Transdução de Sinais , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Cristalografia por Raios X , Células HEK293 , Humanos , Interleucina-3/química , Interleucina-3/genética , Interleucina-3/metabolismo , Subunidade alfa de Receptor de Interleucina-3/genética , Simulação de Dinâmica Molecular , Mutação , Ligação ProteicaRESUMO
The ß common ([ßc]/CD131) family of cytokines comprises granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-3, and IL-5, all of which use ßc as their key signaling receptor subunit. This is a prototypic signaling subunit-sharing cytokine family that has unveiled many biological paradigms and structural principles applicable to the IL-2, IL-4, and IL-6 receptor families, all of which also share one or more signaling subunits. Originally identified for their functions in the hematopoietic system, the ßc cytokines are now known to be truly pleiotropic, impacting on multiple cell types, organs, and biological systems, and thereby controlling the balance between health and disease. This review will focus on the emerging biological roles for the ßc cytokines, our progress toward understanding the mechanisms of receptor assembly and signaling, and the application of this knowledge to develop exciting new therapeutic approaches against human disease.
Assuntos
Citocinas/classificação , Citocinas/metabolismo , Citocinas/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Inflamação/metabolismo , Sepse/metabolismo , Transdução de SinaisRESUMO
Immune evasion is a recently defined hallmark of cancer, and immunotherapeutic approaches that stimulate an immune response to tumours are gaining recognition. However tumours may evade the immune response and resist immune-targeted treatment by promoting an immune-suppressive environment and stimulating the differentiation or recruitment of immunosuppressive cells. Myeloid-derived suppressor cells (MDSC) have been identified in a range of cancers and are often associated with tumour progression and poor patient outcomes. Pancreatic cancer in particular supports MDSC differentiation via the secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF), and MDSC are believed to contribute to the profoundly immune-suppressive microenvironment present in pancreatic tumours. MDSC-targeted therapies that deplete or inhibit this cell population have been proposed as a way to shift the balance in favour of a tumour-clearing immune response. In this study, we have modelled MDSC differentiation and function in vitro and this has provided us with the opportunity to test a range of potential MDSC-targeted therapies to identify candidates for further investigation. Using in vitro modelling we show here that the combination of GM-CSF-signalling blockade and gemcitabine suppresses both the MDSC phenotype and the inhibition of T-cell function by MDSC.