Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Immunity ; 43(5): 945-58, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26588780

RESUMO

Epithelial cells orchestrate pulmonary homeostasis and pathogen defense and play a crucial role in the initiation of allergic immune responses. Maintaining the balance between homeostasis and inappropriate immune activation and associated pathology is particularly complex at mucosal sites that are exposed to billions of potentially antigenic particles daily. We demonstrated that epithelial cell-derived cytokine TGF-ß had a central role in the generation of the pulmonary immune response. Mice that specifically lacked epithelial cell-derived TGF-ß1 displayed a reduction in type 2 innate lymphoid cells (ILCs), resulting in suppression of interleukin-13 and hallmark features of the allergic response including airway hyperreactivity. ILCs in the airway lumen were primed to respond to TGF-ß by expressing the receptor TGF-ßRII and ILC chemoactivity was enhanced by TGF-ß. These data demonstrate that resident epithelial cells instruct immune cells, highlighting the central role of the local environmental niche in defining the nature and magnitude of immune reactions.


Assuntos
Células Epiteliais/imunologia , Imunidade Inata/imunologia , Pulmão/imunologia , Linfócitos/imunologia , Fator de Crescimento Transformador beta1/imunologia , Animais , Células Cultivadas , Interleucina-13/imunologia , Camundongos , Proteínas Serina-Treonina Quinases/imunologia , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/imunologia , Hipersensibilidade Respiratória/imunologia
2.
Br J Haematol ; 174(6): 911-22, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27313079

RESUMO

B-cell maturation antigen (BCMA, also termed TNFRSF17) is an attractive therapeutic target due to its restricted expression on normal and malignant plasma cells (PC). GSK2857916 (or J6M0-MMAF) is a BCMA-specific antibody conjugated to the microtubule-disrupting agent monomethyl auristatin F (MMAF) via a protease-resistant linker. To evaluate the clinical potential of this agent, tumour cells from seventy multiple myeloma (MM) patients were assessed for BCMA expression by immunohistochemistry and flow cytometry. All patients tested expressed BCMA, at varying levels, and both surface and intracellular expression were observed. BCMA expression is maintained through relapse, extramedullary spread and in residual disease post therapy. BCMA levels may also be prognostically useful as higher levels of BCMA were associated with poorer outcomes, even taking into account genetic risk. We observed rapid internalization of surface BCMA and newly expressed protein by 1 h, suggesting a mechanism for J6M0-MMAF activity even with low surface antigen. J6M0-MMAF mediated cytotoxicity of MM cells varied with dose and antigen levels, with clonogenic progenitors killed at lower doses than mature cells. In comparison, J6M0-MMAF killing of primary CD138(+) myeloma cells occurred with slower kinetics. Our observations support BCMA to be a promising therapeutic target in MM for novel therapies such as J6M0-MMAF.


Assuntos
Antígeno de Maturação de Linfócitos B/antagonistas & inibidores , Imunoconjugados/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antígeno de Maturação de Linfócitos B/genética , Antígeno de Maturação de Linfócitos B/metabolismo , Medula Óssea/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Seguimentos , Expressão Gênica , Humanos , Imunoconjugados/farmacologia , Imuno-Histoquímica , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/mortalidade , Plasmócitos/metabolismo , Plasmócitos/patologia , Prognóstico
3.
J Cell Sci ; 127(Pt 24): 5157-63, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25344251

RESUMO

Skeletal muscle atrophy is a debilitating process that is associated with a wide variety of conditions including inactivity, disease and aging. Here, we demonstrate that the actin, myocardin-related transcription factors and serum response factor (actin-Mrtf-Srf) pathway is specifically downregulated in the muscle atrophy that is induced through disuse in mice. We show in vivo that the abolition of mechanical signals leads to the rapid accumulation of G-actin in myonuclei and the export of the Srf coactivator Mrtf-A, resulting in a decrease of Mrtf-Srf-dependent transcription that contributes to atrophy. We demonstrate that inhibition of the actin-Mrtf-Srf axis through overexpression of nuclear non-polymerizable actin, through pharmacological inhibition of Mrtf-Srf and through muscle-specific Srf deletion worsens denervation-induced atrophy. Conversely, maintenance of high levels of activity of Srf or Mrtfs in denervated muscle, through overexpression of constitutively active derivatives, counteracts atrophy. Altogether, our data provide new mechanistic insights into the control of muscle mass upon disuse atrophy by the actin-Mrtf-Srf pathway, highlighting Srf as a key mediator of mechanotransduction in muscle.


Assuntos
Actinas/metabolismo , Atrofia Muscular/metabolismo , Transtornos Musculares Atróficos/metabolismo , Fator de Resposta Sérica/metabolismo , Transativadores/metabolismo , Animais , Núcleo Celular/metabolismo , Camundongos , Músculo Esquelético/inervação , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Transtornos Musculares Atróficos/patologia , Transdução de Sinais
4.
Br J Haematol ; 167(2): 194-206, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25079197

RESUMO

Defects in bone repair contribute to multiple myeloma (MM) bone disease. It is unknown whether this reflects failure of osteogenic differentiation from mesenchymal stromal cells (MSC), inherent stromal defects or mature cell dysfunction. We quantified the number of fibroblast colony-forming units (CFU-f) and osteoblast colony-forming units (CFU-ob) in freshly isolated bone marrow (BM) from healthy individuals (N = 10) and MM patients (N = 54). CFU-f and CFU-ob were present in MM BM, at comparable frequency to normal subjects, irrespective of disease stage, and the presence of bone disease. Adherent cultures from MM BM are able to differentiate into osteoblasts, as indicated by the early upregulation of RUNX2, SP7, AXIN2 and DLX5, and the production of alkaline phosphatase and calcium. Coculture with MM cells failed to prevent osteogenic differentiation of adult human MSC. On the other hand, MM cells induced cell cycle progression in resting MSC in a cell contact dependent manner. This effect was confirmed using both primary CD138+ cells and MM cell lines, and was not seen with B or T cell lines. Our data confirm the presence of osteoblast progenitors and the preservation of osteogenic function in MM, however dysregulation of cell cycle control may contribute to the loss of normal bone homeostasis that ultimately results in osteolytic bone loss.


Assuntos
Células-Tronco Mesenquimais/patologia , Mieloma Múltiplo/patologia , Osteogênese/fisiologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Comunicação Celular/fisiologia , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Técnicas de Cocultura , Fibroblastos/patologia , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/fisiopatologia , Osteoblastos/patologia , Células Tumorais Cultivadas , Ensaio Tumoral de Célula-Tronco
6.
J Cell Biol ; 217(2): 685-700, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29269426

RESUMO

Satellite cells (SCs) are adult muscle stem cells that are mobilized when muscle homeostasis is perturbed. Here, we show that serum response factor (Srf) is needed for optimal SC-mediated hypertrophic growth. We identified Srf as a master regulator of SC fusion required in both fusion partners, whereas it was dispensable for SC proliferation and differentiation. We show that SC-specific Srf deletion leads to impaired actin cytoskeleton and report the existence of finger-like actin-based protrusions at fusion sites in vertebrates that were notoriously absent in fusion-defective myoblasts lacking Srf. Restoration of a polymerized actin network by overexpression of an α-actin isoform in Srf mutant SCs rescued their fusion with a control cell in vitro and in vivo and reestablished overload-induced muscle growth. These findings demonstrate the importance of Srf in controlling the organization of actin cytoskeleton and actin-based protrusions for myoblast fusion in mammals and its requirement to achieve efficient hypertrophic myofiber growth.


Assuntos
Actinas/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Fator de Resposta Sérica/metabolismo , Animais , Fusão Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Camundongos , Camundongos Transgênicos , Células Satélites de Músculo Esquelético/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA