RESUMO
Seasonal-to-decadal predictions are inevitably uncertain, depending on the size of the predictable signal relative to unpredictable chaos. Uncertainties can be accounted for using ensemble techniques, permitting quantitative probabilistic forecasts. In a perfect system, each ensemble member would represent a potential realization of the true evolution of the climate system, and the predictable components in models and reality would be equal. However, we show that the predictable component is sometimes lower in models than observations, especially for seasonal forecasts of the North Atlantic Oscillation and multiyear forecasts of North Atlantic temperature and pressure. In these cases the forecasts are underconfident, with each ensemble member containing too much noise. Consequently, most deterministic and probabilistic measures underestimate potential skill and idealized model experiments underestimate predictability. However, skilful and reliable predictions may be achieved using a large ensemble to reduce noise and adjusting the forecast variance through a postprocessing technique proposed here.
RESUMO
Decadal variability in the North Atlantic and its subpolar gyre (SPG) has been shown to be predictable in climate models initialized with the concurrent ocean state. Numerous impacts over ocean and land have also been identified. Here we use three versions of the Met Office Decadal Prediction System to provide a multimodel ensemble forecast of the SPG and related impacts. The recent cooling trend in the SPG is predicted to continue in the next 5 years due to a decrease in the SPG heat convergence related to a slowdown of the Atlantic Meridional Overturning Circulation. We present evidence that the ensemble forecast is able to skilfully predict these quantities over recent decades. We also investigate the ability of the forecast to predict impacts on surface temperature, pressure, precipitation, and Atlantic tropical storms and compare the forecast to recent boreal summer climate.
RESUMO
The northern North Atlantic is important globally both through its impact on the Atlantic Meridional Overturning Circulation (AMOC) and through widespread atmospheric teleconnections. The region has been shown to be potentially predictable a decade ahead with the skill of decadal predictions assessed against reanalyses of the ocean state. Here, we show that the prediction skill in this region is strongly dependent on the choice of reanalysis used for validation, and describe the causes. Multiannual skill in key metrics such as Labrador Sea density and the AMOC depends on more than simply the choice of the prediction model. Instead, this skill is related to the similarity between the nature of interannual density variability in the underlying climate model and the chosen reanalysis. The climate models used in these decadal predictions are also used in climate projections, which raises questions about the sensitivity of these projections to the models' innate North Atlantic density variability.
RESUMO
In this paper, the predictability of climate arising from ocean heat content (OHC) anomalies is investigated in the HadCM3 coupled atmosphere-ocean model. An ensemble of simulations of the twentieth century are used to provide initial conditions for a case study. The case study consists of two ensembles started from initial conditions with large differences in regional OHC in the North Atlantic, the Southern Ocean and parts of the West Pacific. Surface temperatures and precipitation are on average not predictable beyond seasonal time scales, but for certain initial conditions there may be longer predictability. It is shown that, for the case study examined here, some aspects of tropical precipitation, European surface temperatures and North Atlantic sea-level pressure are potentially predictable 2 years ahead. Predictability also exists in the other case studies, but the climate variables and regions, which are potentially predictable, differ. This work was done as part of the Grid for Coupled Ensemble Prediction (GCEP) eScience project.
Assuntos
Atmosfera , Clima , Ecologia/métodos , Meteorologia/métodos , Modelos Teóricos , Software , Tempo (Meteorologia) , Simulação por Computador , Ecologia/tendências , Monitoramento Ambiental/métodos , Internet , Oceanos e MaresRESUMO
Decadal prediction uses climate models forced by changing greenhouse gases, as in the International Panel for Climate Change, but unlike longer range predictions they also require initialization with observations of the current climate. In particular, the upper-ocean heat content and circulation have a critical influence. Decadal prediction is still in its infancy and there is an urgent need to understand the important processes that determine predictability on these timescales. We have taken the first Hadley Centre Decadal Prediction System (DePreSys) and implemented it on several NERC institute compute clusters in order to study a wider range of initial condition impacts on decadal forecasting, eventually including the state of the land and cryosphere. The eScience methods are used to manage submission and output from the many ensemble model runs required to assess predictive skill. Early results suggest initial condition skill may extend for several years, even over land areas, but this depends sensitively on the definition used to measure skill, and alternatives are presented. The Grid for Coupled Ensemble Prediction (GCEP) system will allow the UK academic community to contribute to international experiments being planned to explore decadal climate predictability.