Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(1): 016604, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38242667

RESUMO

Fracton order describes novel quantum phases of matter that host quasiparticles with restricted mobility and, thus, lies beyond the existing paradigm of topological order. In particular, excitations that cannot move without creating multiple excitations are called fractons. Here, we address a fundamental open question-can the notion of self-exchange statistics be naturally defined for fractons, given their complete immobility as isolated excitations? Surprisingly, we demonstrate how fractons can be exchanged and show that their self-statistics is a key part of the characterization of fracton orders. We derive general constraints satisfied by the fracton self-statistics in a large class of Abelian fracton orders. Finally, we show the existence of nontrivial fracton self-statistics in some twisted variants of the checkerboard model and Haah's code, establishing that these models are in distinct quantum phases as compared to their untwisted cousins.

2.
Phys Rev Lett ; 124(5): 050402, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32083941

RESUMO

Motivated by the prediction of fractonic topological defects in a quantum crystal, we utilize a reformulated elasticity duality to derive a description of a fracton phase in terms of coupled vector U(1) gauge theories. The fracton order and restricted mobility emerge as a result of an unusual Gauss law where electric field lines of one gauge field act as sources of charge for others. At low energies this vector gauge theory reduces to the previously studied fractonic symmetric tensor gauge theory. We construct the corresponding lattice model and a number of generalizations, which realize fracton phases via a condensation of stringlike excitations built out of charged particles, analogous to the p-string condensation mechanism of the gapped X-cube fracton phase.

3.
Phys Rev Lett ; 112(16): 167203, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24815666

RESUMO

We consider a class of d- and f-electron systems in which dipolar-octupolar Kramers doublets arise on the sites of the pyrochlore lattice. For such doublets, two components of the pseudospin transform like a magnetic dipole, while the other transforms like a component of the magnetic octupole tensor. Based on a symmetry analysis, we construct and study models of dipolar-octupolar doublets in itinerant and localized limits. In both limits, the resulting models are of surprisingly simple form. In the itinerant limit, we find topological insulating behavior. In the localized limit, the most general nearest-neighbor spin model is the XYZ model. We show that this XYZ model exhibits two distinct quantum spin ice (QSI) phases, that we dub dipolar QSI, and octupolar QSI. We conclude with a discussion of potential relevance to real material systems.

4.
Sci Adv ; 5(12): eaax2007, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31897424

RESUMO

We present a scheme to explicitly construct and classify general topological states jointly protected by an onsite symmetry group and a spatial symmetry group. We show that all these symmetry-protected topological states can be adiabatically deformed into a special class of states we call topological crystals. A topological crystal in, for example, three dimensions is a real-space assembly of finite-sized pieces of topological states in one and two dimensions protected by the local symmetry group alone, arranged in a configuration invariant under the spatial group and glued together such that there is no open edge or end. As a demonstration of principle, we explicitly enumerate all inequivalent topological crystals for noninteracting time-reversal symmetric electronic insulators with spin-orbit coupling and any one of the 230 space groups. This enumeration gives topological crystalline insulators a full classification.

5.
Nat Commun ; 7: 11367, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27102065

RESUMO

The physics of doped Mott insulators remains controversial after decades of active research, hindered by the interplay among competing orders and fluctuations. It is thus highly desired to distinguish the intrinsic characters of the Mott-metal crossover from those of other origins. Here we investigate the evolution of electronic structure and dynamics of the hole-doped pseudospin-1/2 Mott insulator Sr2IrO4. The effective hole doping is achieved by replacing Ir with Rh atoms, with the chemical potential immediately jumping to or near the top of the lower Hubbard band. The doped iridates exhibit multiple iconic low-energy features previously observed in doped cuprates-pseudogaps, Fermi arcs and marginal-Fermi-liquid-like electronic scattering rates. We suggest these signatures are most likely an integral part of the material's proximity to the Mott state, rather than from many of the most claimed mechanisms, including preformed electron pairing, quantum criticality or density-wave formation.

6.
Phys Rev Lett ; 103(13): 135301, 2009 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-19905520

RESUMO

We study Mott insulators of fermionic alkaline earth atoms, described by Heisenberg spin models with enhanced SU(N) symmetry. In dramatic contrast to SU(2) magnetism, more than two spins are required to form a singlet. On the square lattice, the classical ground state is highly degenerate and magnetic order is thus unlikely. In a large-N limit, we find a chiral spin liquid ground state with topological order and Abelian fractional statistics. We discuss its experimental detection. Chiral spin liquids with non-Abelian anyons may also be realizable with alkaline earth atoms.

7.
Phys Rev Lett ; 98(11): 117205, 2007 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-17501088

RESUMO

We perform a Gutzwiller projected-wave-function study for the spin-1/2 Heisenberg model on the Kagomé lattice to compare energies of several spin-liquid states. The result indicates that a U(1)-Dirac spin-liquid state has the lowest energy. Furthermore, even without variational parameters, the energy turns out to be very close to that found by exact diagonalization. We show that such a U(1)-Dirac state represents a quantum phase whose low-energy physics is governed by four flavors of two-component Dirac fermions coupled to a U(1) gauge field. These results are discussed in the context of recent experiments on ZnCu(3)(OH)(6)Cl(2).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA