Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 151(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38108453

RESUMO

A growing wealth of data suggest that reactive oxygen species (ROS) signalling might be crucial in conferring embryonic or adult stem cells their specific properties. However, how stem cells control ROS production and scavenging, and how ROS in turn contribute to stemness, remain poorly understood. Using the Xenopus retina as a model system, we first investigated the redox status of retinal stem cells (RSCs). We discovered that they exhibit higher ROS levels compared with progenitors and retinal neurons, and express a set of specific redox genes. We next addressed the question of ROS functional involvement in these cells. Using pharmacological or genetic tools, we demonstrate that inhibition of NADPH oxidase-dependent ROS production increases the proportion of quiescent RSCs. Surprisingly, this is accompanied by an apparent acceleration of the mean division speed within the remaining proliferating pool. Our data further unveil that such impact on RSC cell cycling is achieved by modulation of the Wnt/Hedgehog signalling balance. Altogether, we highlight that RSCs exhibit distinctive redox characteristics and exploit NADPH oxidase signalling to limit quiescence and fine-tune their proliferation rate.


Assuntos
Células-Tronco Adultas , Células-Tronco Neurais , Animais , Xenopus laevis/metabolismo , Espécies Reativas de Oxigênio , Proliferação de Células , Proteínas Hedgehog , Retina/metabolismo , Células-Tronco Adultas/metabolismo , NADPH Oxidases/genética , Via de Sinalização Wnt
2.
Front Oncol ; 10: 879, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582547

RESUMO

Immune response to a given antigen, particularly in cancer patients, is complex and is controlled by various genetic and environmental factors. Identifying biomarkers that can predict robust response to immunization is an urgent need in clinical cancer vaccine development. Given the involvement of DNA methylation in the development of lymphocytes, tumorigenicity and tumor progression, we aimed to analyze pre-vaccination DNA methylation profiles of peripheral blood mononuclear cells (PBMCs) from breast cancer subjects vaccinated with a novel peptide-based vaccine referred to as P10s-PADRE. This pilot study was performed to evaluate whether signatures of differentially methylated (DM) loci can be developed as potential predictive biomarkers for prescreening subjects with cancer who will most likely generate an immune response to the vaccine. Genomic DNA was isolated from PBMCs of eight vaccinated subjects, and their DNA methylation profiles were determined using Infinium® MethylationEPIC BeadChip array from Illumina. A linear regression model was applied to identify loci that were differentially methylated with respect to anti-peptide antibody titers and with IFN-γ production. The data were summarized using unsupervised-learning methods: hierarchical clustering and principal-component analysis. Pathways and networks involved were predicted by Ingenuity Pathway Analysis. We observed that the profile of DM loci separated subjects in regards to the levels of immune responses. Canonical pathways and networks related to metabolic and immunological functions were found to be involved. The data suggest that it is feasible to correlate methylation signatures in pre-treatment PBMCs with immune responses post-treatment in cancer patients going through standard-of-care chemotherapy. Larger and prospective studies that focus on DM loci in PBMCs is warranted to develop pre-screening biomarkers before BC vaccination. Clinical Trial Registration: www.ClinicalTrials.gov, Identifier: NCT02229084.

3.
Monoclon Antib Immunodiagn Immunother ; 37(3): 117-125, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29939836

RESUMO

Evolutionary theories are necessarily invoked for understanding cancer development at the level of species, at the level of cells and tissues, and for developing effective therapies. It is crucial to view cancer in a Darwinian light, where the differential survival of individual cells is based on heritable variations. In the process of this somatic evolution, multicellularity controls are overridden by cancer cells, which become increasingly autonomous. Ecological epigenetics also helps understand how rogue cells that have basically the same DNA as their normal cell counterpart overcome the tissue homeostasis. As we struggle to wrap our minds around the complexity of these phenomena, we apply often times anthropomorphic terms, such as subversion, hijacking, or hacking, to describe especially the most complex among them-the interaction of tumors with the immune system. In this commentary we highlight examples of the anthropomorphic thinking of cancer and try to put into context the relative meaning of terms and the mechanisms that are oftentimes invoked to justify those terms.


Assuntos
Antígeno B7-H1/genética , Transformação Celular Neoplásica/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/genética , Neoplasias/genética , Animais , Medicina Antroposófica , Autoanticorpos/biossíntese , Autoanticorpos/genética , Antígeno B7-H1/imunologia , Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/patologia , Interação Gene-Ambiente , Homeostase/genética , Homeostase/imunologia , Humanos , Imunidade Inata , Interferon gama/genética , Interferon gama/imunologia , Mutação , Proteínas de Neoplasias/imunologia , Neoplasias/imunologia , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA