Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Food Microbiol ; 288: 66-74, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29395387

RESUMO

EN ISO 10273 method for the detection of pathogenic Yersinia enterocolitica in foods was validated in the project Mandate M/381 funded by European Commission. A total of 14 laboratories from five European countries participated in the interlaboratory study (ILS) organized during 2013 and 2014. Before the ILS, the method was revised by an international group of experts and the performance of the revised method was assessed in an ILS study. The results are published as a part of the standard EN ISO 10273 revision. The study included three rounds with different sample types; raw milk, iceberg lettuce and minced meat, inoculated with a low and high level of pathogenic Y. enterocolitica strains representing major pathogenic bioserotypes 4/O:3 and 2/O:9. The homogeneity and stability of the samples were verified before dispatching them to the laboratories. The results demonstrated the method sensitivity of 96% in raw milk, 97% in minced meat, and 98% in lettuce at high inoculation level of pathogenic Y. enterocolitica. The specificity was 100% in raw milk, 96% in minced meat, and 98% in lettuce. The level of detection, LOD50, varied between study rounds, being 9.4 CFU/25 ml in raw milk, 9.9 CFU/25 g in minced meat and 63 CFU/25 g in lettuce samples. During the study, confirmation by using real-time PCR method ISO/TS 18867 together with pyrazinamidase testing was also validated, as alternative to conventional biochemical confirmation. When comparing different isolation steps used in the revised method during the study rounds, PSB enrichment and plating on CIN after alkaline (KOH) treatment showed the highest sensitivity (52-92%) in raw milk and minced meat samples. In lettuce samples, however, ITC with KOH treatment before plating on CIN showed higher sensitivity (64% at low level; 82% at high level) than plating on CIN from PSB with KOH treatment (44% at low level; 74% at high level). Statistical analysis of different isolation steps supported the use of two enrichment media, PSB and ITC, in the revised method. Recovery of pathogenic Y. enterocolitica on CIN was most efficient after KOH treatment and, based on the analysis, plating on CIN agar without KOH treatment could be left as optional procedure in the method.


Assuntos
Microbiologia de Alimentos/métodos , Yersinia enterocolitica/fisiologia , Animais , Europa (Continente) , União Europeia , Lactuca/microbiologia , Limite de Detecção , Carne/microbiologia , Leite/microbiologia , Reprodutibilidade dos Testes , Yersinia enterocolitica/isolamento & purificação
2.
FEBS Lett ; 516(1-3): 167-71, 2002 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-11959126

RESUMO

The photosystem II (PSII) reaction center protein D1 undergoes rapid light-dependent turnover, which is caused by photoinhibition. To identify the photoreceptor(s) involved in the light-dependent expression of the psbA gene encoding the D1 protein, we determined the action spectra of psbA transcription, PSII activity, photosynthesis and photoinhibition in Synechocystis sp. PCC 6803. In accordance with its phycobilisome antenna, PSII showed the highest activity in the spectral region from yellow to red and only low activity in the ultraviolet-A (UV-A) to green region. Photoinhibition, in turn, was fastest in UV-A to violet light and a minor peak was found in the orange region. The action spectrum of psbA transcription resembled closely that of photoinhibition, suggesting that photoinhibition creates a signal for up-regulation of the psbA gene.


Assuntos
Cianobactérias/genética , Cianobactérias/efeitos da radiação , Proteínas de Membrana/genética , Proteínas de Membrana/efeitos da radiação , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Complexo de Proteína do Fotossistema I , Genes Bacterianos/efeitos da radiação , Fotobiologia , Complexo de Proteína do Fotossistema II , Ficobilissomas , Transdução de Sinais , Transcrição Gênica/efeitos da radiação , Raios Ultravioleta
3.
Physiol Plant ; 112(4): 531-539, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11473713

RESUMO

Expression and regulation of psb genes, encoding various subunits of photosystem II (PSII), were studied in the cyanobacterium Synechocystis sp. PCC 6803. Transcription of the psbA and psbD genes, encoding the PSII reaction centre proteins D1 and D2, was rapidly activated upon onset of illumination and the transcription rates were enhanced at high irradiance. Gel retardation analysis demonstrated dark-enhanced binding of proteins to the upstream region of the psbA2 gene, pointing to a repressor-protein-based transcriptional regulation mechanism. Transcription of all the other psb genes also required light, but unlike the psbA and psbD genes, these psb genes did not respond specifically to high-light. Moreover, the transcription of these psb genes was activated slowly at onset of illumination, and was strictly dependent on de novo protein synthesis. We suggest that these psb genes are up-regulated in the light via transcriptional activator proteins, and the slow activation may be related to production of new PSII centres during growth. Apart from the two distinct mechanisms for transcriptional regulation, all psb genes shared a common regulation mechanism at the level of transcript stability, mediated by the redox poise of intersystem electron carrier(s).

4.
Int J Food Microbiol ; 176: 38-48, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24561828

RESUMO

The objective was to study folate production of yeast strains, bacteria isolated from oat bran, and selected lactic acid bacteria as well as one propionibacterium in oat and barley based models. Simultaneously, we aimed at sustaining the stability of viscosity, representing the physicochemical state of beta-glucan. Total folate contents were determined microbiologically and vitamers for selected samples by UHPLC. Folate in yeast cells comprised mainly 5-methyltetrahydrofolate and tetrahydrofolate. Folate production by microbes in YPD medium was different to that in cereal fermentations where vitamers included 5-methyltetrahydrofolate, 5,10-methenyltetrahydrofolate and formylated derivatives. Microbes producing significant amounts of folate without affecting viscosity were Saccharomyces cerevisiae ALKO743 and Candida milleri ABM4949 among yeasts and Pseudomonas sp. ON8 and Janthinobacterium sp. RB4 among bacteria. Net folate production was up to 120 ng/g after 24 h fermentation and could increase during 2-week storage. Glucose addition increased the proportion of 5-methyltetrahydrofolate. Streptococcus thermophilus ABM5097, Lactobacillus reuteri, and Propionibacterium sp. ABM5378 produced folate but in lower concentrations. Both endogenous and added microbes contribute to folate enhancement. Selection of microbes with folate producing capability and limited hydrolytic activity will enable the development of products rich in folate and beta-glucan.


Assuntos
Avena/microbiologia , Ácido Fólico/biossíntese , Microbiologia de Alimentos , Hordeum/microbiologia , Leveduras/metabolismo , beta-Glucanas , Fermentação , Ácido Fólico/análise , Viscosidade , Leveduras/enzimologia
5.
Int J Food Microbiol ; 142(3): 277-85, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20678822

RESUMO

The aim of this research was to identify endogenous bacteria in commercial oat bran and rye flake products in order to study their folate production capability while maintaining the soluble dietary fibre components in physiologically active, unhydrolyzed form. Fourty-two bacteria were isolated from three different oat bran products and 26 bacteria from one rye flake consumer product. The bacteria were tentatively identified by sequence analysis of the 16S rRNA genes. The identification results revealed up to 18 distinct bacterial species belonging to 13 genera in oat bran, and 11 species belonging to 10 genera in rye flakes. The most common bacterial genus in oat bran was Pantoea, followed by Acinetobacter, Bacillus, and Staphylococcus. Pantoea species dominated also in rye flakes. The extracellular enzymatic activities of the isolates were studied by substrate hydrolysis plate assays. Nearly 80% of the isolates hydrolyzed carboxymethylcellulose, whereas starch-degrading activities were surprisingly rare (10%). Beta-glucan was hydrolyzed by 19% of the isolates. Protease, lipase or xylanase activity was expressed by 24%, 29%, and 16%, respectively, of the isolates. Representatives of the genera Bacillus, Curtobacterium, Pedobacter, and Sanguibacter showed the highest diversity of enzymatic activities, whereas members of Janthinobacterium and Staphylococcus possessed no hydrolytic activities for the substrates studied. Production capability for total folates was analyzed from aerobic cell cultures at the stationary growth phase. The amount of folates was determined separately for the cell mass and the supernatant by microbiological assay. For comparison, folate production was also examined in a number of common lactic acid bacteria. The best producers in oat bran belonged to the genera Bacillus, Janthinobacterium, Pantoea, and Pseudomonas, and those in rye flakes to Chryseobacterium, Erwinia, Plantibacter, and Pseudomonas. Supernatant folate contents were high for Bacillus, Erwinia, Janthinobacterium, Pseudomonas, and Sanguibacter. Compared to the endogenous bacteria, lactic acid bacteria were poor folate producers. The results of this work provide the first insight into the potential role of endogenous microflora in modulating the nutrient levels of oat and rye based cereal products, and pave way to future innovations of nutritionally improved cereal foods.


Assuntos
Avena/microbiologia , Bactérias/metabolismo , Fibras na Dieta/metabolismo , Ácido Fólico/biossíntese , Secale/microbiologia , Avena/química , Bactérias/enzimologia , Bactérias/genética , Bactérias/isolamento & purificação , Fibras na Dieta/análise , Grão Comestível , Hidrólise , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Secale/química , Solubilidade
6.
Int J Food Microbiol ; 143(1-2): 41-7, 2010 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-20708290

RESUMO

Twenty bacteria isolated from three commercial oat bran products were tested for their folate production capability. The bacteria as well as some reference organisms were grown until early stationary phase on a rich medium (YPD), and the amount of total folate in the separated cell mass and the culture medium (supernatant) was determined by microbiological assay. Folate vitamer distribution was determined for eight bacteria including one isolated from rye flakes. For seven bacteria the effect of temperature and pH on folate production was studied in more detail. Relatively large amount of folate was both produced in the cell biomass (up to 20.8microg/g) and released to the culture medium (up to 0.38microg/g) by studied bacteria. The best producers were characterized as Bacillus subtilis ON4, Chryseobacterium sp. NR7, Janthinobacterium sp. RB4, Pantoea agglomerans ON2, and Pseudomonas sp ON8. The level of folate released in culture medium was the highest for B. subtilis ON5, Chryseobacterium sp. NR7, Curtobacterium sp. ON7, Enterococcus durans ON9, Janthinobacterium sp. RB4, Paenibacillus sp. ON10, Propionibacterium sp. RB9, and Staphylococcus kloosii RB7. Marked differences in the distribution of folate vitamers among the bacterial strains were revealed by the HPLC analysis. The main vitamers were tetrahydrofolate, 5,10-methenyltetrahydrofolate, 5-methyltetrahydrofolate, and 5-formyltetrahydrofolate. Increase in the folate content during bacterial growth was accompanied by proportional increase in the 5-methyltetrahydrofolate content and decrease of 5-formyltetrahydrofolate. 10-Formylfolic acid dominated in the culture media of four bacteria, and Janthinobacterium sp. RB4 was also found to excrete 5-methyltetrahydrofolate. Intracellular folate content was higher when the bacteria were grown at 28 degrees C than at 18 degrees C or 37 degrees C and also higher at pH 7 than at pH 5.5.


Assuntos
Avena/microbiologia , Bactérias/metabolismo , Grão Comestível/microbiologia , Ácido Fólico/biossíntese , Meios de Cultura , Concentração de Íons de Hidrogênio , Secale/microbiologia , Temperatura
7.
Plant Cell Physiol ; 46(9): 1484-93, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15979982

RESUMO

Cyanobacteria acclimate to changes in incident light by adjusting photosystem stoichiometry through regulation of PSI accumulation. To gain a deeper insight into this control mechanism in Synechocystis sp. strain PCC 6803, we studied the expression and regulation of the psaAB operon, encoding the reaction center proteins of PSI, during the initial stage of acclimation to changes in the intensity and quality of light. The psaAB operon was transcribed as a dicistronic transcript, which was processed into smaller, putatively monocistronic psaA and psaB transcript species. Dark treatment of the cells inhibited the psaAB transcription, whereas re-illumination of dark-adapted cells reactivated the transcription slowly in a process requiring de novo protein synthesis. Transfer of cells from white to orange light, favoring excitation of PSII, stimulated the psaAB transcription, whereas far-red light, primarily exciting PSI, down-regulated the transcription of the psaAB operon. These results, together with down-regulation of psaAB transcription upon the addition of electron transport inhibitors under constant white light illumination, suggested that the photosynthetic redox poise affects the psaAB transcription activity in the light. Pulse-labeling experiments demonstrated that light-induced modulations in the translation rate of the PsaA protein closely parallel the transcription rate of the psaAB operon, indicating that transcriptional regulation plays the major role in determining the content of PSI reaction center proteins and, thereby, PSI complexes, during light acclimation. The scantiness of PsaA translation in darkness despite the abundance of psaA transcripts demonstrated that the comprehensive regulation of PSI accumulation also involves regulation at the level of translation.


Assuntos
Adaptação Fisiológica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Luz , Complexo de Proteína do Fotossistema I/genética , Synechocystis/genética , Sequência de Bases , Primers do DNA , Óperon , Oxirredução , RNA Mensageiro/genética , Synechocystis/fisiologia
8.
Plant Physiol ; 134(1): 470-81, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14730074

RESUMO

The composition and dynamics of membrane protein complexes were studied in the cyanobacterium Synechocystis sp. PCC 6803 by two-dimensional blue native/SDS-PAGE followed by matrix-assisted laser-desorption ionization time of flight mass spectrometry. Approximately 20 distinct membrane protein complexes could be resolved from photoautotrophically grown wild-type cells. Besides the protein complexes involved in linear photosynthetic electron flow and ATP synthesis (photosystem [PS] I, PSII, cytochrome b6f, and ATP synthase), four distinct complexes containing type I NAD(P)H dehydrogenase (NDH-1) subunits were identified, as well as several novel, still uncharacterized protein complexes. The dynamics of the protein complexes was studied by culturing the wild type and several mutant strains under various growth modes (photoautotrophic, mixotrophic, or photoheterotrophic) or in the presence of different concentrations of CO2, iron, or salt. The most distinct modulation observed in PSs occurred in iron-depleted conditions, which induced an accumulation of CP43' protein associated with PSI trimers. The NDH-1 complexes, on the other hand, responded readily to changes in the CO2 concentration and the growth mode of the cells and represented an extremely dynamic group of membrane protein complexes. Our results give the first direct evidence, to our knowledge, that the NdhF3, NdhD3, and CupA proteins assemble together to form a small low CO2-induced protein complex and further demonstrate the presence of a fourth subunit, Sll1735, in this complex. The two bigger NDH-1 complexes contained a different set of NDH-1 polypeptides and are likely to function in respiratory and cyclic electron transfer. Pulse labeling experiments demonstrated the requirement of PSII activity for de novo synthesis of the NDH-1 complexes.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Trifosfato de Adenosina/biossíntese , Proteínas de Bactérias/isolamento & purificação , Dióxido de Carbono/metabolismo , Cianobactérias/genética , Cianobactérias/crescimento & desenvolvimento , Transporte de Elétrons , Eletroforese em Gel Bidimensional , Genes Bacterianos , Ferro/metabolismo , Proteínas de Membrana/isolamento & purificação , NADPH Desidrogenase/genética , NADPH Desidrogenase/isolamento & purificação , NADPH Desidrogenase/metabolismo , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/isolamento & purificação , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Proteômica , Cloreto de Sódio/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA