RESUMO
Vector-borne pathogens exist in obligate transmission cycles between vector and reservoir host species. Host and vector shifts can lead to geographic expansion of infectious agents and the emergence of new diseases in susceptible individuals. Three bacterial genospecies (Borrelia afzelii, Borrelia bavariensis, and Borrelia garinii) predominantly utilize two distinct tick species as vectors in Asia (Ixodes persulcatus) and Europe (Ixodes ricinus). Through these vectors, the bacteria can infect various vertebrate groups (e.g., rodents, birds) including humans where they cause Lyme borreliosis, the most common vector-borne disease in the Northern hemisphere. Yet, how and in which order the three Borrelia genospecies colonized each continent remains unclear including the evolutionary consequences of this geographic expansion. Here, by reconstructing the evolutionary history of 142 Eurasian isolates, we found evidence that the ancestors of each of the three genospecies probably have an Asian origin. Even so, each genospecies studied displayed a unique substructuring and evolutionary response to the colonization of Europe. The pattern of allele sharing between continents is consistent with the dispersal rate of the respective vertebrate hosts, supporting the concept that adaptation of Borrelia genospecies to the host is important for pathogen dispersal. Our results highlight that Eurasian Lyme borreliosis agents are all capable of geographic expansion with host association influencing their dispersal; further displaying the importance of host and vector association to the geographic expansion of vector-borne pathogens and potentially conditioning their capacity as emergent pathogens.
Assuntos
Distribuição Animal , Vetores Aracnídeos , Borrelia , Ixodes , Doença de Lyme , Animais , Humanos , Ásia , Borrelia/genética , Borrelia/fisiologia , Grupo Borrelia Burgdorferi/genética , Grupo Borrelia Burgdorferi/fisiologia , Ixodes/microbiologia , Ixodes/fisiologia , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , Europa (Continente) , Vetores Aracnídeos/microbiologia , Vetores Aracnídeos/fisiologia , Distribuição Animal/fisiologia , Adaptação Biológica/genética , Adaptação Biológica/fisiologiaRESUMO
BACKGROUND: Museums and other institutions curating natural history collections (NHCs) are fundamental entities to many scientific disciplines, as they house data and reference material for varied research projects. As such, biological specimens preserved in NHCs represent accessible physical records of the living world's history. They provide useful information regarding the presence and distribution of different taxonomic groups through space and time. Despite the importance of biological museum specimens, their potential to answer scientific questions, pertinent to the necessities of our current historical context, is often under-explored.The currently-known wild bee fauna of Luxembourg comprises 341 registered species distributed amongst 38 different genera. However, specimens stored in the archives of local NHCs represent an untapped resource to update taxonomic lists, including potentially overlooked findings relevant to the development of national conservation strategies. NEW INFORMATION: We re-investigated the wild bee collection of the Zoology Department of the National Museum of Natural History Luxembourg by using morphotaxonomy and DNA barcoding. The collection revision led to the discovery of four species so far not described for the country: Andrena lagopus (Latreille, 1809), Nomada furva (Panzer, 1798), Hoplitis papaveris (Latreille, 1799) and Sphecodes majalis (Pérez, 1903). Additionally, the presence of Nomada sexfasciata (Panzer, 1799), which inexplicably had been omitted by the most current species list, can be re-confirmed. Altogether, our findings increase the number of recorded wild bee species in Luxembourg to 346. Moreover, the results highlight the crucial role of NHCs as repositories of our knowledge of the natural world.