RESUMO
Cytotoxic T lymphocytes (CTLs) recognize peptides presented by HLA class I molecules on the cell surface. The C terminus of these CTL epitopes is considered to be produced by the proteasome. Here we demonstrate that the cytosolic endopeptidases nardilysin and thimet oligopeptidase (TOP) complemented proteasome activity. Nardilysin and TOP were required, either together or alone, for the generation of a tumor-specific CTL epitope from PRAME, an immunodominant CTL epitope from Epstein-Barr virus protein EBNA3C, and a clinically important epitope from the melanoma protein MART-1. TOP functioned as C-terminal trimming peptidase in antigen processing, and nardilysin contributed to both the C-terminal and N-terminal generation of CTL epitopes. By broadening the antigenic peptide repertoire, nardilysin and TOP strengthen the immune defense against intracellular pathogens and cancer.
Assuntos
Antígenos de Neoplasias/metabolismo , Epitopos de Linfócito T/metabolismo , Metaloendopeptidases/metabolismo , Linfócitos T Citotóxicos/metabolismo , Apresentação de Antígeno/genética , Antígenos de Neoplasias/química , Antígenos de Neoplasias/imunologia , Citotoxicidade Imunológica/genética , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Antígeno HLA-A3/metabolismo , Humanos , Células K562 , Metaloendopeptidases/genética , Metaloendopeptidases/imunologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , RNA Interferente Pequeno/genética , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia , Transgenes/genéticaRESUMO
Insulin-degrading enzyme (IDE) hydrolyzes bioactive peptides, including insulin, amylin, and the amyloid ß peptides. Polyanions activate IDE toward some substrates, yet an endogenous polyanion activator has not yet been identified. Here we report that inositol phosphates (InsPs) and phosphatdidylinositol phosphates (PtdInsPs) serve as activators of IDE. InsPs and PtdInsPs interact with the polyanion-binding site located on an inner chamber wall of the enzyme. InsPs activate IDE by up to â¼95-fold, affecting primarily Vmax The extent of activation and binding affinity correlate with the number of phosphate groups on the inositol ring, with phosphate positional effects observed. IDE binds PtdInsPs from solution, immobilized on membranes, or presented in liposomes. Interaction with PtdInsPs, likely PtdIns(3)P, plays a role in localizing IDE to endosomes, where the enzyme reportedly encounters physiological substrates. Thus, InsPs and PtdInsPs can serve as endogenous modulators of IDE activity, as well as regulators of its intracellular spatial distribution.
Assuntos
Endossomos/metabolismo , Fosfatos de Inositol/metabolismo , Insulisina/metabolismo , Fosfatidilinositóis/metabolismo , Androstadienos/farmacologia , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , Endossomos/efeitos dos fármacos , Ativação Enzimática , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Insulisina/química , Insulisina/genética , Lipossomos/química , Lipossomos/metabolismo , Mutação , WortmaninaRESUMO
OBJECTIVE: Pulmonary artery smooth muscle cells (PASMCs) from neprilysin (NEP) null mice exhibit a synthetic phenotype and increased activation of Rho GTPases compared with their wild-type counterparts. Although Rho GTPases are known to promote a contractile SMC phenotype, we hypothesize that their sustained activity decreases SM-protein expression in these cells. APPROACH AND RESULTS: PASMCs isolated from wild-type and NEP-/- mice were used to assess levels of SM-proteins (SM-actin, SM-myosin, SM22, and calponin) by Western blotting, and were lower in NEP-/- PASMCs compared with wild-type. Rac and Rho (ras homology family member) levels and activity were higher in NEP-/- PASMCs, and ShRNA to Rac and Rho restored SM-protein, and attenuated the enhanced migration and proliferation of NEP-/- PASMCs. SM-gene repressors, p-Elk-1, and Klf4 (Kruppel lung factor 4), were higher in NEP-/- PASMCs and decreased by shRNA to Rac and Rho. Costimulation of wild-type PASMCs with PDGF (platelet-derived growth factor) and the NEP substrate, ET-1 (endothelin-1), increased Rac and Rho activity, and decreased SM-protein levels mimicking the NEP knock-out phenotype. Activation of Rac and Rho and downstream effectors was observed in lung tissue from NEP-/- mice and humans with chronic obstructive pulmonary disease. CONCLUSIONS: Sustained Rho activation in NEP-/- PASMCs is associated with a decrease in SM-protein levels and increased migration and proliferation. Inactivation of RhoGDI (Rho guanine dissociation inhibitor) and RhoGAP (Rho GTPase activating protein) by phosphorylation may contribute to prolonged activation of Rho in NEP-/- PASMCs. Rho GTPases may thus have a role in integration of signals between vasopeptides and growth factor receptors and could influence pathways that suppress SM-proteins to promote a synthetic phenotype.
Assuntos
Proteínas Musculares/biossíntese , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Neprilisina/deficiência , Proteínas rho de Ligação ao GTP/metabolismo , Actinas/biossíntese , Animais , Becaplermina/farmacologia , Proteínas de Ligação ao Cálcio/biossíntese , Movimento Celular , Proliferação de Células , Células Cultivadas , Endotelina-1/farmacologia , Ativação Enzimática , Genótipo , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/biossíntese , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Neprilisina/genética , Fenótipo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/enzimologia , Artéria Pulmonar/patologia , Doença Pulmonar Obstrutiva Crônica/enzimologia , Doença Pulmonar Obstrutiva Crônica/patologia , Transdução de Sinais , Miosinas de Músculo Liso/biossíntese , Proteínas Elk-1 do Domínio ets/genética , Proteínas Elk-1 do Domínio ets/metabolismo , Proteínas rho de Ligação ao GTP/genética , CalponinasRESUMO
Amyloid-beta (Aß) is a group of aggregation-prone, 38- to 43-amino acid peptides generated in the eye and other organs. Numerous studies suggest that the excessive build-up of low-molecular-weight soluble oligomers of Aß plays a role in the progression of Alzheimer's disease and other brain degenerative diseases. Recent studies raise the hypothesis that excessive Aß levels may contribute also to certain retinal degenerative diseases. These findings, together with evidence that a major portion of Aß is released as monomer into the extracellular space, raise the possibility that a technology enabling the enzymatic break-down of monomeric Aß in the living eye under physiological conditions could prove useful for research on ocular Aß physiology and, perhaps ultimately, for therapeutic applications. Neprilysin (NEP), an endopeptidase known to cleave Aß monomer into inactive products, is a membrane-associated protein. However, sNEP, a recombinant form of the NEP catalytic domain, is soluble in aqueous medium. With the aim of determining the Aß-cleaving activity of exogenous sNEP in the microenvironment of the intact eye, we analyzed the effect of intra-vitreally delivered sNEP on ocular Aß levels in mice that exhibit readily measurable, aqueous buffer-extractable Aß40 and Aß42, two principal forms of Aß. Anesthetized 10-month wild-type (C57BL/6J) and 2-3-month 5XFAD transgenic mice received intra-vitreal injections of sNEP (0.004-10 µg) in one eye and were sacrificed at defined post-treatment times (30 min - 12 weeks). Eye tissues (combined lens, vitreous, retina, RPE and choroid) were homogenized in phosphate-buffered saline, and analyzed for Aß40 and Aß42 (ELISA) and for total protein (Bradford assay). The fellow, untreated eye of each mouse served as control, and concentrations of Aß (pmol/g protein) in the treated eye were normalized to that of the untreated control eye. In C57BL/6J mice, as measured at 2 h after sNEP treatment, increasing amounts of injected sNEP yielded progressively greater reductions of Aß40, ranging from 12% ± 3% (mean ± SEM; n = 3) with 4 ng sNEP to 85% ± 13% (n = 5) with 10 µg sNEP. At 4 ng sNEP the average Aß40 reduction reached >70% by 24 h following treatment and remained near this level for about 8 weeks. In 5XFAD mice, 10 µg sNEP produced an Aß40 decrease of 99% ± 1% (n = 4) and a substantial although smaller decrease in Aß42 (42% ± 36%; n = 4) within 24 h. Electroretinograms (ERGs) were recorded from eyes of C57BL/6J and 5XFAD mice at 9 days following treatment with 4 ng or 10 µg sNEP, conditions that on average led, respectively, to an 82% and 91% Aß40 reduction in C57BL/6J eyes, an 87% and 92% Aß40 reduction in 5XFAD eyes, and a 23% and 52% Aß42 reduction in 5XFAD eyes. In all cases, sNEP-treated eyes exhibited robust ERG responses, consistent with a general tolerance of the posterior eye tissues to the investigated conditions of sNEP treatment. The sNEP-mediated decrease of ocular Aß levels reported here represents a possible approach for determining effects of Aß reduction in normally functioning eyes and in models of retinal degenerative disease.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Corioide/metabolismo , Cristalino/metabolismo , Neprilisina/farmacologia , Retina/metabolismo , Corpo Vítreo/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Modelos Animais de Doenças , Eletrorretinografia , Ensaio de Imunoadsorção Enzimática , Humanos , Injeções Intravítreas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Doadores de TecidosRESUMO
Insulin-degrading enzyme (IDE) (insulysin) is a zinc metallopeptidase that metabolizes several bioactive peptides, including insulin and the amyloid ß peptide. IDE is an unusual metallopeptidase in that it is allosterically activated by both small peptides and anions, such as ATP. Here, we report that the ATP-binding site is located on a portion of the substrate binding chamber wall arising largely from domain 4 of the four-domain IDE. Two variants having residues in this site mutated, IDEK898A,K899A,S901A and IDER429S, both show greatly decreased activation by the polyphosphate anions ATP and PPPi. IDEK898A,K899A,S901A is also deficient in activation by small peptides, suggesting a possible mechanistic link between the two types of allosteric activation. Sodium chloride at high concentrations can also activate IDE. There are no observable differences in average conformation between the IDE-ATP complex and unliganded IDE, but regions of the active site and C-terminal domain do show increased crystallographic thermal factors in the complex, suggesting an effect on dynamics. Activation by ATP is shown to be independent of the ATP hydrolysis activity reported for the enzyme. We also report that IDEK898A,K899A,S901A has reduced intracellular function relative to unmodified IDE, consistent with a possible role for anion activation of IDE activity in vivo. Together, the data suggest a model in which the binding of anions activates by reducing the electrostatic attraction between the two halves of the enzyme, shifting the partitioning between open and closed conformations of IDE toward the open form.
Assuntos
Insulisina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Ânions/metabolismo , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Ativação Enzimática , Insulisina/química , Insulisina/genética , Espaço Intracelular/metabolismo , Modelos Moleculares , Mutagênese , Mutação , Conformação Proteica , RatosRESUMO
ß-Secretase, the rate-limiting enzymatic activity in the production of the amyloid-ß (Aß) peptide, is a major target of Alzheimer's disease (AD) therapeutics. There are two forms of the enzyme: ß-site Aß precursor protein cleaving enzyme (BACE) 1 and BACE2. Although BACE1 increases in late-stage AD, little is known about BACE2. We conducted a detailed examination of BACE2 in patients with preclinical to late-stage AD, including amnestic mild cognitive impairment, and age-matched controls, cases of frontotemporal dementia, and Down's syndrome. BACE2 protein and enzymatic activity increased as early as preclinical AD and were found in neurons and astrocytes. Although the levels of total BACE2 mRNA were unchanged, the mRNA for BACE2 splice form C (missing exon 7) increased in parallel with BACE2 protein and activity. BACE1 and BACE2 were strongly correlated with each other at all levels, suggesting that their regulatory mechanisms may be largely shared. BACE2 was also elevated in frontotemporal dementia but not in Down's syndrome, even in patients with substantial Aß deposition. Thus, expression of both forms of ß-secretase are linked and may play a combined role in human neurologic disease. A better understanding of the normal functions of BACE1 and BACE2, and how these change in different disease states, is essential for the future development of AD therapeutics.
Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Química Encefálica , Feminino , Humanos , Masculino , Neprilisina/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismoRESUMO
Puromycin-sensitive aminopeptidase (E.C. 3.4.11.14, UniProt P55786), a zinc metallopeptidase belonging to the M1 family, degrades a number of bioactive peptides as well as peptides released from the proteasome, including polyglutamine. We report the crystal structure of PSA at 2.3 Ǻ. Overall, the enzyme adopts a V-shaped architecture with four domains characteristic of the M1 family aminopeptidases, but it is in a less compact conformation compared to most M1 enzymes of known structure. A microtubule binding sequence is present in a C-terminal HEAT repeat domain of the enzyme in a position where it might serve to mediate interaction with tubulin. In the catalytic metallopeptidase domain, an elongated active site groove lined with aromatic and hydrophobic residues and a large S1 subsite may play a role in broad substrate recognition. The structure with bound polyglutamine shows a possible interacting mode of this peptide, which is supported by mutation.
Assuntos
Aminopeptidases , Peptídeos , Aminopeptidases/metabolismo , Metaloproteases/metabolismo , Sítios de Ligação , Especificidade por SubstratoRESUMO
Phosphatase of Regenerating Liver-3 (PRL-3) is associated with cancer progression and metastasis. The mechanisms that drive PRL-3's oncogenic functions are not well understood, partly due to a lack of research tools available to study this protein. We have begun to address these issues by developing alpaca-derived single domain antibodies, or nanobodies, targeting PRL-3 with a KD of 30-300 nM and no activity towards highly homologous family members PRL-1 and PRL-2. We found that longer and charged N-terminal tags on PRL-3, such as GFP and FLAG, changed PRL-3 localization compared to untagged protein, indicating that the nanobodies may provide new insights into PRL-3 trafficking and function. The nanobodies perform equally, if not better, than commercially available antibodies in immunofluorescence and immunoprecipitation. Finally, hydrogen-deuterium exchange mass spectrometry (HDX-MS) showed that the nanobodies bind partially within the PRL-3 active site and can interfere with PRL-3 phosphatase activity. Co-immunoprecipitation with a known PRL-3 active site binding partner, the CBS domain of metal transporter CNNM3, showed that the nanobodies reduced the amount of PRL-3:CBS inter-action. The potential of blocking this interaction is highly relevant in cancer, as multiple research groups have shown that PRL-3 binding to CNNM proteins is sufficient to promote metastatic growth in mouse models. The anti-PRL-3 nanobodies represent an important expansion of the research tools available to study PRL-3 function and can be used to define the role of PRL-3 in cancer progression.
Assuntos
Anticorpos , Neoplasias , Anticorpos de Domínio Único , Animais , Camundongos , Camelídeos Americanos , Modelos Animais de DoençasRESUMO
Insulin-degrading enzyme (IDE) exists primarily as a dimer being unique among the zinc metalloproteases in that it exhibits allosteric kinetics with small synthetic peptide substrates. In addition the IDE reaction rate is increased by small peptides that bind to a distal site within the substrate binding site. We have generated mixed dimers of IDE in which one or both subunits contain mutations that affect activity. The mutation Y609F in the distal part of the substrate binding site of the active subunit blocks allosteric activation regardless of the activity of the other subunit. This effect shows that substrate or small peptide activation occurs through a cis effect. A mixed dimer composed of one wild-type subunit and the other subunit containing a mutation that neither permits substrate binding nor catalysis (H112Q) exhibits the same turnover number per active subunit as wild-type IDE. In contrast, a mixed dimer in which one subunit contains the wild-type sequence and the other contains a mutation that permits substrate binding, but not catalysis (E111F), exhibits a decrease in turnover number. This indicates a negative trans effect of substrate binding at the active site. On the other hand, activation in trans is observed with extended substrates that occupy both the active and distal sites. Comparison of the binding of an amyloid ß peptide analog to wild-type IDE and to the Y609F mutant showed no difference in affinity, indicating that Y609 does not play a significant role in substrate binding at the distal site.
Assuntos
Insulina/química , Insulina/metabolismo , Peptídeos beta-Amiloides/química , Animais , Bradicinina/química , Catálise , Domínio Catalítico , Dicroísmo Circular , Dimerização , Dinorfinas/química , Endorfinas/química , Humanos , Cinética , Peso Molecular , Mutação , Peptídeos/química , Especificidade por SubstratoRESUMO
RATIONALE: Studies with genetically engineered mice showed that decreased expression of the transmembrane peptidase neprilysin (NEP) increases susceptibility to hypoxic pulmonary vascular remodeling and hypertension; in hypoxic wild-type mice, expression is decreased early in distal pulmonary arteries, where prominent vascular remodeling occurs. Therefore, in humans with smoke- and hypoxia-induced vascular remodeling, as in chronic obstructive pulmonary disease (COPD), pulmonary activity/expression of NEP may likewise be decreased. OBJECTIVES: To test whether NEP activity and expression are reduced in COPD lungs and pulmonary arterial smooth muscle cells (SMCs) exposed to cigarette smoke extract or hypoxia and begin to investigate mechanisms involved. METHODS: Control and advanced COPD lung lysates (n = 13-14) were analyzed for NEP activity and protein and mRNA expression. As a control, dipeptidyl peptidase IV activity was analyzed. Lung sections were assessed for vascular remodeling and oxidant damage. Human pulmonary arterial SMCs were exposed to cigarette smoke extract, hypoxia, or H2O2, and incubated with antioxidants or lysosomal/proteasomal inhibitors. MEASUREMENTS AND MAIN RESULTS: COPD lungs demonstrated areas of vascular rarification, distal muscularization, and variable intimal and prominent medial/adventitial thickening. NEP activity was reduced by 76%; NEP protein expression was decreased in alveolar walls and distal vessels; mRNA expression was also decreased. In SMCs exposed to cigarette smoke extract, hypoxia, and H2O2, NEP activity and expression were also reduced. Reactive oxygen species inactivated NEP activity; NEP protein degradation appeared to be substantially induced. CONCLUSIONS: Mechanisms responsible for reduced NEP activity and protein expression include oxidative reactions and protein degradation. Maintaining or increasing lung NEP may protect against pulmonary vascular remodeling in response to chronic smoke and hypoxia.
Assuntos
Remodelação das Vias Aéreas/fisiologia , Neprilisina/fisiologia , Doença Pulmonar Obstrutiva Crônica/patologia , Adolescente , Idoso , Western Blotting , Estudos de Casos e Controles , Feminino , Humanos , Pulmão/irrigação sanguínea , Pulmão/química , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Neprilisina/análise , Alvéolos Pulmonares/patologia , Artéria Pulmonar/patologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Adulto JovemRESUMO
The airborne nature of coronavirus transmission makes it critical to develop new barrier technologies that can simultaneously reduce aerosol and viral spread. Here, we report nanostructured membranes with tunable thickness and porosity for filtering coronavirus-sized aerosols, combined with antiviral enzyme functionalization that can denature spike glycoproteins of the SARS-CoV-2 virus in low-hydration environments. Thin, asymmetric membranes with subtilisin enzyme and methacrylic functionalization show more than 98.90% filtration efficiency for 100-nm unfunctionalized and protein-functionalized polystyrene latex aerosol particles. Unfunctionalized membranes provided a protection factor of 540 ± 380 for coronavirus-sized particle, above the Occupational Safety and Health Administration's standard of 10 for N95 masks. SARS-CoV-2 spike glycoprotein on the surface of coronavirus-sized particles was denatured in 30 s by subtilisin enzyme-functionalized membranes with 0.02-0.2% water content on the membrane surface.
RESUMO
The use of the peptidase neprilysin (NEP) as a therapeutic for lowering brain amyloid burden is receiving increasing attention. We have previously demonstrated that peripheral expression of NEP on the surface of hindlimb muscle lowers brain amyloid burden in a transgenic mouse model of Alzheimer's disease. In this study we now show that using adeno-associated virus expressing a soluble secreted form of NEP (secNEP-AAV8), NEP secreted into plasma is effective in clearing brain Abeta. Soluble NEP expression in plasma was sustained over the 3-month time period it was measured. Secreted NEP decreased plasma Abeta by 30%, soluble brain Abeta by approximately 28%, insoluble brain Abeta by approximately 55%, and Abeta oligomersby 12%. This secNEP did not change plasma levels of substance P or bradykinin, nor did it alter blood pressure. No NEP was detected in CSF, nor did the AAV virus produce brain expression of NEP. Thus the lowering of brain Abeta was due to plasma NEP which altered blood-brain Abeta transport dynamics. Expressing NEP in plasma provides a convenient way to monitor enzyme activity during the course of its therapeutic testing.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Neprilisina/sangue , Animais , Pressão Sanguínea , Barreira Hematoencefálica/enzimologia , Bradicinina/sangue , Química Encefálica , Dependovirus , Humanos , Camundongos , Neprilisina/genética , Substância P/sangueRESUMO
Egress from host cells is an essential step in the lytic cycle of T. gondii and other apicomplexan parasites; however, only a few parasite secretory proteins are known to affect this process. The putative metalloproteinase toxolysin 4 (TLN4) was previously shown to be an extensively processed microneme protein, but further characterization was impeded by the inability to genetically ablate TLN4. Here, we show that TLN4 has the structural properties of an M16 family metalloproteinase, that it possesses proteolytic activity on a model substrate, and that genetic disruption of TLN4 reduces the efficiency of egress from host cells. Complementation of the knockout strain with the TLN4 coding sequence significantly restored egress competency, affirming that the phenotype of the Δtln4 parasite was due to the absence of TLN4. This work identifies TLN4 as the first metalloproteinase and the second microneme protein to function in T. gondii egress. The study also lays a foundation for future mechanistic studies defining the precise role of TLN4 in parasite exit from host cells. IMPORTANCE After replicating within infected host cells, the single-celled parasite Toxoplasma gondii must rupture out of such cells in a process termed egress. Although it is known that T. gondii egress is an active event that involves disruption of host-derived membranes surrounding the parasite, very few proteins that are released by the parasite are known to facilitate egress. In this study, we identify a parasite secretory protease that is necessary for efficient and timely egress, laying the foundation for understanding precisely how this protease facilitates T. gondii exit from host cells.
RESUMO
The endopeptidase neprilysin (NEP) is a major amyloid-beta (Abeta) degrading enzyme and has been implicated in the pathogenesis of Alzheimer's disease. Because NEP cleaves substrates other than Abeta, we investigated the potential role of NEP-mediated processing of neuropeptides in the mechanisms of neuroprotection in vivo. Overexpression of NEP at low levels in transgenic (tg) mice affected primarily the levels of neuropeptide Y (NPY) compared with other neuropeptides. Ex vivo and in vivo studies in tg mice and in mice that received lentiviral vector injections showed that NEP cleaved NPY into C-terminal fragments (CTFs), whereas silencing NEP reduced NPY processing. Immunoblot and mass spectrometry analysis showed that NPY 21-36 and 31-36 were the most abundant fragments generated by NEP activity in vivo. Infusion of these NPY CTFs into the brains of APP (amyloid precursor protein) tg mice ameliorated the neurodegenerative pathology in this model. Moreover, the amidated NPY CTFs protected human neuronal cultures from the neurotoxic effects of Abeta. This study supports the possibility that the NPY CTFs generated during NEP-mediated proteolysis might exert neuroprotective effects in vivo. This function of NEP represents a unique example of a proteolytic enzyme with dual action, namely, degradation of Abeta as well as processing of NPY.
Assuntos
Neprilisina/química , Neprilisina/metabolismo , Degeneração Neural/prevenção & controle , Neuropeptídeo Y/uso terapêutico , Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Arginina/análogos & derivados , Arginina/farmacologia , Benzazepinas/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática/métodos , Regulação da Expressão Gênica/genética , Vetores Genéticos/fisiologia , Humanos , Camundongos , Camundongos Transgênicos , Neprilisina/genética , Degeneração Neural/etiologia , Fatores de Crescimento Neural/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuropeptídeo Y/química , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/uso terapêutico , Receptores de Neuropeptídeo Y/antagonistas & inibidoresRESUMO
Neprilysin is a transmembrane metalloendopeptidase that degrades neuropeptides that are important for both growth and contraction. In addition to promoting carcinogenesis, decreased levels of neprilysin increases inflammation and neuroendocrine cell hyperplasia, which may predispose to vascular remodeling. Early pharmacological studies showed a decrease in chronic hypoxic pulmonary hypertension with neprilysin inhibition. We used a genetic approach to test the alternate hypothesis that neprilysin depletion increases chronic hypoxic pulmonary hypertension. Loss of neprilysin had no effect on baseline airway or alveolar wall architecture, vessel density, cardiac function, hematocrit, or other relevant peptidases. Only lung neuroendocrine cell hyperplasia and a subtle neuropeptide imbalance were found. After chronic hypoxia, neprilysin-null mice exhibited exaggerated pulmonary hypertension and striking increases in muscularization of distal vessels. Subtle thickening of proximal media/adventitia not typically seen in mice was also detected. In contrast, adaptive right ventricular hypertrophy was less than anticipated. Hypoxic wild-type pulmonary vessels displayed close temporal and spatial relationships between decreased neprilysin and increased cell growth. Smooth muscle cells from neprilysin-null pulmonary arteries had increased proliferation compared with controls, which was decreased by neprilysin replacement. These data suggest that neprilysin may be protective against chronic hypoxic pulmonary hypertension in the lung, at least in part by attenuating the growth of smooth muscle cells. Lung-targeted strategies to increase neprilysin levels could have therapeutic benefits in the treatment of this disorder.
Assuntos
Hipertensão Pulmonar/patologia , Hipóxia/genética , Camundongos Knockout , Neprilisina/deficiência , Artéria Pulmonar/patologia , Circulação Pulmonar/fisiologia , Animais , Divisão Celular , Doença Crônica , Primers do DNA , Predisposição Genética para Doença , Genótipo , Hemodinâmica , Hipertensão Pulmonar/genética , Hipóxia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/patologia , Neprilisina/genéticaRESUMO
Neprilysin (NEP) is a zinc metallopeptidase that efficiently degrades the amyloid beta (Abeta) peptides believed to be involved in the etiology of Alzheimer disease (AD). The focus of this study was to develop a new and tractable therapeutic approach for treating AD using NEP gene therapy. We have introduced adeno-associated virus (AAV) expressing the mouse NEP gene into the hindlimb muscle of 6-month-old human amyloid precursor protein (hAPP) (3X-Tg-AD) mice, an age which correlates with early stage AD. Overexpression of NEP in muscle decreased brain soluble Abeta peptide levels by approximately 60% and decreased amyloid deposits by approximately 50%, with no apparent adverse effects. Expression of NEP on muscle did not affect the levels of a number of other physiological peptides known to be in vitro substrates. These findings demonstrate that peripheral expression of NEP and likely other peptidases represents an alternative to direct administration into brain and illustrates the potential for using NEP expression in muscle for the prevention and treatment of AD.
Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Regulação da Expressão Gênica , Neprilisina/metabolismo , Animais , Western Blotting , Encéfalo/metabolismo , Encéfalo/patologia , Dependovirus/genética , Modelos Animais de Doenças , Terapia Genética/métodos , Membro Posterior/metabolismo , Membro Posterior/patologia , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Neprilisina/genéticaRESUMO
The substrate specificity of the mitochondrial metallopeptidase proteinase 1 (MP1) was investigated and its mitochondrial targeting signal identified. The substrate specificity of MP1 was examined with physiological peptides as substrates. Although the enzyme exhibits broad substrate specificity, there is a trend for peptides containing 13 or more residues to exhibit K(m) values of 2 muM or less. Three of four peptides containing 11 or fewer residues exhibited K(m) values above 10 muM. Similarly, peptides containing 13 or more residues exhibited k(cat) values below 10 min(-1), while three of four peptides containing 11 or fewer residues exhibited k(cat) values above 30 min(-1). Many of the peptide cleavage sites of MP1 resemble that of the mitochondrial processing protease (MPP); however, MP1 does not process the precursor form of citrate synthase. The enzyme, however, does cleave the released prepeptide from precitrate synthase. A mitochondria localization was shown in MP1 transfected NT2 and HepG2 cells. Deletion of the N-terminal 15 amino acids caused MP1 to be mislocalized to the cytoplasm and nucleus. Furthermore, when fused to green flourescent protein, this 15-amino acid N-terminal sequence directed the fusion protein to the mitochondria.
Assuntos
Metaloendopeptidases/metabolismo , Mitocôndrias/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Citrato (si)-Sintase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Hidrólise/efeitos dos fármacos , Íons , Cinética , Metaloendopeptidases/química , Metais/farmacologia , Mitocôndrias/efeitos dos fármacos , Dados de Sequência Molecular , Transporte Proteico/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/enzimologia , Especificidade por Substrato/efeitos dos fármacos , Tirosina/metabolismo , beta-Endorfina/metabolismoRESUMO
A number of therapeutic strategies for treating Alzheimer's disease have focused on reducing amyloid burden in the brain. Among these approaches, the expression of amyloid beta peptide (Abeta)-degrading enzymes in the brain has been shown to be effective but to date not practical for treating patients. We report here a novel strategy for lowering amyloid burden in the brain by peripherally expressing the Abeta-degrading enzyme neprilysin on leukocytes in the 3xTg-AD mouse model of Alzheimer's disease. Through transplantation of lentivirus-transduced bone marrow cells, the Abeta-degrading protease neprilysin was expressed on the surface of leukocytes. This peripheral neprilysin reduced soluble brain Abeta peptide levels by approximately 30% and lowered the accumulation of amyloid beta peptides by 50-60% when transplantation was performed at both young and early adult age. In addition, peripheral neprilysin expression reduced amyloid-dependent performance deficits as measured by the Morris water maze. Unlike other methods designed to lower Abeta levels in blood, which cause a net increase in peptide, neprilysin expression results in the catabolism of Abeta to small, innocuous peptide fragments. These findings demonstrate that peripherally expressed neprilysin, and likely other Abeta-degrading enzymes, has the potential to be utilized as a therapeutic approach to prevent and treat Alzheimer's disease and suggest that this approach should be explored further.
Assuntos
Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Terapia Genética , Leucócitos/metabolismo , Neprilisina/genética , Neprilisina/metabolismo , Envelhecimento , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Animais , Pressão Sanguínea , Transplante de Medula Óssea , Transtornos Cognitivos/terapia , Modelos Animais de Doenças , Humanos , Lentivirus , Aprendizagem em Labirinto , Camundongos , Camundongos Transgênicos , Transdução GenéticaRESUMO
In this manuscript, a method for the immunization of alpaca and the use of molecular biology methods to produce antigen-specific single domain antibodies is described and demonstrated. Camelids, such as alpacas and llamas, have become a valuable resource for biomedical research since they produce a novel type of heavy chain-only antibody which can be used to produce single domain antibodies. Because the immune system is highly flexible, single domain antibodies can be made to many different protein antigens, and even different conformations of the antigen, with a very high degree of specificity. These features, among others, make single domain antibodies an invaluable tool for biomedical research. A method for the production of single domain antibodies from alpacas is reported. A protocol for immunization, blood collection, and B-cell isolation is described. The B-cells are used for the construction of an immunized library, which is used in the selection of specific single domain antibodies via panning. Putative specific single domain antibodies obtained via panning are confirmed by pull-down, ELISA, or gel-shift assays. The resulting single domain antibodies can then be used either directly or as a part of an engineered reagent. The uses of single domain antibody and single domain antibody-based regents include structural, biochemical, cellular, in vivo, and therapeutic applications. Single domain antibodies can be produced in large quantities as recombinant proteins in prokaryotic expression systems, purified, and used directly or can be engineered to contain specific markers or tags that can be used as reporters in cellular studies or in diagnostics.
Assuntos
Antígenos/imunologia , Camelídeos Americanos/imunologia , Imunização/métodos , Proteínas Recombinantes/imunologia , Anticorpos de Domínio Único/biossíntese , Animais , Camelídeos Americanos/genética , Humanos , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/isolamento & purificaçãoRESUMO
Neprilysin is a zinc metalloendopeptidase with relatively broad substrate specificity. The enzyme is localized to the plasma membrane of cells where it can function to degrade extracellular peptides. Structural studies show that neprilysin preferentially cleaves peptides on the amino side of hydrophobic amino acids. Neprilysin has been implicated in the catabolism of amyloid beta peptides in the brain and as such has received considerable attention, particularly as a therapeutic target for Alzheimer's disease. An inverse relationship between neprilysin levels and amyloid beta peptide levels and between neprilysin levels and amyloid plaque formation has been observed in human brain. Neprilysin levels decline with aging in the temporal and frontal cortex possibly contributing to higher amyloid beta peptide levels. A number of studies have shown that increasing neprilysin levels in the brain leads to a decrease in brain amyloid beta peptide levels. Most recently a potential relationship between amyloid beta peptide synthesis from the amyloid precursor protein and neprilysin activity has been proposed.