Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Syst Biol ; 19(4): e10523, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36847213

RESUMO

Vibrio natriegens is a Gram-negative bacterium with an exceptional growth rate that has the potential to become a standard biotechnological host for laboratory and industrial bioproduction. Despite this burgeoning interest, the current lack of organism-specific qualitative and quantitative computational tools has hampered the community's ability to rationally engineer this bacterium. In this study, we present the first genome-scale metabolic model (GSMM) of V. natriegens. The GSMM (iLC858) was developed using an automated draft assembly and extensive manual curation and was validated by comparing predicted yields, central metabolic fluxes, viable carbon substrates, and essential genes with empirical data. Mass spectrometry-based proteomics data confirmed the translation of at least 76% of the enzyme-encoding genes predicted to be expressed by the model during aerobic growth in a minimal medium. iLC858 was subsequently used to carry out a metabolic comparison between the model organism Escherichia coli and V. natriegens, leading to an analysis of the model architecture of V. natriegens' respiratory and ATP-generating system and the discovery of a role for a sodium-dependent oxaloacetate decarboxylase pump. The proteomics data were further used to investigate additional halophilic adaptations of V. natriegens. Finally, iLC858 was utilized to create a Resource Balance Analysis model to study the allocation of carbon resources. Taken together, the models presented provide useful computational tools to guide metabolic engineering efforts in V. natriegens.


Assuntos
Vibrio , Vibrio/genética , Vibrio/metabolismo , Carbono/metabolismo , Alocação de Recursos
2.
J Proteome Res ; 18(4): 1461-1476, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30702898

RESUMO

Ocean metaproteomics is an emerging field enabling discoveries about marine microbial communities and their impact on global biogeochemical processes. Recent ocean metaproteomic studies have provided insight into microbial nutrient transport, colimitation of carbon fixation, the metabolism of microbial biofilms, and dynamics of carbon flux in marine ecosystems. Future methodological developments could provide new capabilities such as characterizing long-term ecosystem changes, biogeochemical reaction rates, and in situ stoichiometries. Yet challenges remain for ocean metaproteomics due to the great biological diversity that produces highly complex mass spectra, as well as the difficulty in obtaining and working with environmental samples. This review summarizes the progress and challenges facing ocean metaproteomic scientists and proposes best practices for data sharing of ocean metaproteomic data sets, including the data types and metadata needed to enable intercomparisons of protein distributions and annotations that could foster global ocean metaproteomic capabilities.


Assuntos
Disseminação de Informação/métodos , Oceanos e Mares , Proteômica , Microbiologia da Água , Bases de Dados de Proteínas , Humanos , Metagenômica
3.
Bioinformatics ; 34(5): 795-802, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29028897

RESUMO

Motivation: Complex microbial communities can be characterized by metagenomics and metaproteomics. However, metagenome assemblies often generate enormous, and yet incomplete, protein databases, which undermines the identification of peptides and proteins in metaproteomics. This challenge calls for increased discrimination of true identifications from false identifications by database searching and filtering algorithms in metaproteomics. Results: Sipros Ensemble was developed here for metaproteomics using an ensemble approach. Three diverse scoring functions from MyriMatch, Comet and the original Sipros were incorporated within a single database searching engine. Supervised classification with logistic regression was used to filter database searching results. Benchmarking with soil and marine microbial communities demonstrated a higher number of peptide and protein identifications by Sipros Ensemble than MyriMatch/Percolator, Comet/Percolator, MS-GF+/Percolator, Comet & MyriMatch/iProphet and Comet & MyriMatch & MS-GF+/iProphet. Sipros Ensemble was computationally efficient and scalable on supercomputers. Availability and implementation: Freely available under the GNU GPL license at http://sipros.omicsbio.org. Contact: cpan@utk.edu. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Proteômica/métodos , Software , Algoritmos , Metagenômica/métodos , Microbiota/genética , Ferramenta de Busca
4.
Proteomics ; 15(20): 3486-96, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26260905

RESUMO

Microorganisms that respire electrodes may be exploited for biotechnology applications if key pathways for extracellular electron transfer can be identified and manipulated through bioengineering. To determine whether expression of proposed Biocathode-MCL extracellular electron transfer proteins are changed by modulating electrode potential without disrupting the relative distribution of microbial constituents, metaproteomic and 16S rRNA gene expression analyses were performed after switching from an optimal to suboptimal potential based on an expected decrease in electrode respiration. Five hundred and seventy-nine unique proteins were identified across both potentials, the majority of which were assigned to three previously defined Biocathode-MCL metagenomic clusters: a Marinobacter sp., a member of the family Chromatiaceae, and a Labrenzia sp (abbreviated as MCL). Statistical analysis of spectral counts using the Fisher's exact test identified 16 proteins associated with the optimal potential, five of which are predicted electron transfer proteins. The majority of proteins associated with the suboptimal potential were involved in protein turnover/synthesis, motility, and membrane transport. Unipept and 16S rRNA gene expression analyses indicated that the taxonomic profile of the microbiome did not change after 52 h at the suboptimal potential. These findings show that protein expression is sensitive to the electrode potential without inducing shifts in community composition, a feature that may be exploited for engineering Biocathode-MCL. All MS data have been deposited in the ProteomeXchange with identifier PXD001590 (http://proteomecentral.proteomexchange.org/dataset/PXD001590).


Assuntos
Microbiota/genética , Biossíntese de Proteínas/genética , Proteômica , RNA Ribossômico 16S/genética , Biofilmes/crescimento & desenvolvimento , Reatores Biológicos , Marinobacter/genética , Transcriptoma
5.
J Proteome Res ; 12(3): 1289-99, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23305560

RESUMO

The bacterial ribosomal protein S12 contains a universally conserved D88 residue on a loop region thought to be critically involved in translation due to its proximal location to the A site of the 30S subunit. While D88 mutants are lethal this residue has been found to be post-translationally modified to ß-methylthioaspartic acid, a post-translational modification (PTM) identified in S12 orthologs from several phylogenetically distinct bacteria. In a previous report focused on characterizing this PTM, our results provided evidence that this conserved loop region might be involved in forming multiple proteins-protein interactions ( Strader , M. B. ; Costantino , N. ; Elkins , C. A. ; Chen , C. Y. ; Patel , I. ; Makusky , A. J. ; Choy , J. S. ; Court , D. L. ; Markey , S. P. ; Kowalak , J. A. A proteomic and transcriptomic approach reveals new insight into betamethylthiolation of Escherichia coli ribosomal protein S12. Mol. Cell. Proteomics 2011 , 10 , M110 005199 ). To follow-up on this study, the D88 containing loop was probed to identify candidate binders employing a two-step complementary affinity purification strategy. The first involved an endogenously expressed S12 protein containing a C-terminal tag for capturing S12 binding partners. The second strategy utilized a synthetic biotinylated peptide representing the D88 conserved loop region for capturing S12 loop interaction partners. Captured proteins from both approaches were detected by utilizing SDS-PAGE and one-dimensional liquid chromatography-tandem mass spectrometry. The results presented in this report revealed proteins that form direct interactions with the 30S subunit and elucidated which are likely to interact with S12. In addition, we provide evidence that two proteins involved in regulating ribosome and/or mRNA transcript levels under stress conditions, RNase R and Hfq, form direct interactions with the S12 conserved loop, suggesting that it is likely part of a protein binding interface.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteômica , Proteínas Ribossômicas/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/isolamento & purificação , Dados de Sequência Molecular , Ligação Proteica , Proteínas Ribossômicas/química , Espectrometria de Massas em Tandem
6.
Arch Biochem Biophys ; 528(1): 7-20, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22906720

RESUMO

While the general catalytic mechanism of the widespread serine hydrolase superfamily has been documented extensively, much less is known about its varied modes of functional modulation within biological systems. Under oxidizing conditions, inhibition of Saccharomyces cerevisiae S-formylglutathione hydrolase (SFGH, homologous to human esterase D) activity is attributable to a cysteine (Cys-60) adjacent to its catalytic triad and approximately 8.0 Šaway from the Oγ of the nucleophilic serine. Cys-60 is oxidized to a sulfenic acid in the structure of the Paraoxon-inhibited W197I variant (PDB 3C6B). The structural snap-shot captured an unstable reversibly oxidized state, but it remained unclear as to whether the oxidation occurred before, during, or after the reaction with the organophosphate inhibitor. To determine if the oxidation of Cys-60 was functionally linked to ester hydrolysis, we used kinetic analysis and site-directed mutagenesis in combination with X-ray crystallography. The essential nature of Cys-60 for oxidation is demonstrated by the C60S variant, which is not inhibited by peroxide in the presence or absence of substrate. In the presence of substrate, the rate of inhibition of the WT SFGH by peroxide increases 14-fold, suggesting uncompetitive behavior linking oxidation to ester hydrolysis. Here we found one variant, H160I, which is activated by peroxide. This variant is activated at comparable rates in the presence or absence of substrate, indicating that the conserved His-160 is involved in the inhibitory mechanism linking ester hydrolysis to the oxidation of Cys-60. Copper chloride inhibition experiments show that at least two metal ions bind and inhibit both WT and H160I. A structure of the Paraoxon-inhibited W197I variant soaked with CuCl(2) shows density for one metal ion per monomer at the N-terminus, and density around the Cys-60 sulfur consistent with a sulfinic acid, Cys-SO(2). A Dali structural similarity search uncovered two other enzymes (Bacillus subtilis RsbQ, 1WOM and Clostridium acetobutylicum Lipase-esterase, 3E0X) that contain a similar Cys adjacent to a catalytic triad. We speculate that the regulatory motif uncovered is conserved in some D-type esterases and discuss its structural similarities in the active site of human protective protein (HPP; also known as Cathepsin A).


Assuntos
Peróxidos/metabolismo , Saccharomyces cerevisiae/enzimologia , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Histidina/química , Histidina/genética , Histidina/metabolismo , Hidrólise , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oxirredução , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Tioléster Hidrolases/genética
7.
J Am Chem Soc ; 133(24): 9480-96, 2011 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-21612225

RESUMO

We describe the synthesis of a series of four different ligands which are used to prepare hydrophilic, biocompatible luminescent quantum dots (QDs) and gold nanoparticles (AuNPs). Overall, the ligands are designed to be compact while still imparting a zwitterionic character to the NPs. Ligands are synthesized appended to a bidentate dihydrolipoic acid- (DHLA) anchor group, allowing for high-affinity NP attachment, and simultaneously incorporate tertiary amines along with carboxyl and/or hydroxyl groups. These are placed in close proximity within the ligand structure and their capacity for joint ionization imparts the requisite zwitterionic nature to the nanocrystal. QDs functionalized with the four different compact ligands were subjected to extensive physical characterization including surface charge, wettability, hydrodynamic size, and tolerance to a wide pH range or high salt concentration over time. The utility of the compact ligand coated QDs was further examined by testing of direct conjugation to polyhistidine-appended protein and peptides, aqueous covalent-coupling chemistry, and the ability to engage in Förster resonance energy transfer (FRET). Conjugating cell penetrating peptides to the compact ligand coated QD series facilitated their rapid and efficient cellular uptake, while subsequent cytotoxicity tests showed no apparent decreases in cell viability. In vivo biocompatibility was also demonstrated by microinjecting the compact ligand coated QDs into cells and monitoring their stability over time. Inherent benefits of the ligand design could be extended beyond QDs as AuNPs functionalized with the same compact ligand series showed similar colloidal properties. The strong potential of these ligands to expand NP capabilities in many biological applications is highlighted.


Assuntos
Materiais Revestidos Biocompatíveis/química , Ouro/química , Substâncias Luminescentes/química , Nanopartículas Metálicas/química , Pontos Quânticos , Semicondutores , Animais , Transporte Biológico , Células COS , Peptídeos Penetradores de Células/química , Chlorocebus aethiops , Materiais Revestidos Biocompatíveis/metabolismo , Desenho de Fármacos , Histidina/química , Hidrodinâmica , Concentração de Íons de Hidrogênio , Ligantes , Substâncias Luminescentes/metabolismo , Polietilenoglicóis/química , Proteínas Recombinantes/química , Sais/química , Ácido Tióctico/análogos & derivados , Ácido Tióctico/química , Molhabilidade
8.
Open Biol ; 11(8): 210142, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34404232

RESUMO

Barnacles interest the scientific community for multiple reasons: their unique evolutionary trajectory, vast diversity and economic impact-as a harvested food source and also as one of the most prolific macroscopic hard biofouling organisms. A common, yet novel, trait among barnacles is adhesion, which has enabled a sessile adult existence and global colonization of the oceans. Barnacle adhesive is primarily composed of proteins, but knowledge of how the adhesive proteome varies across the tree of life is unknown due to a lack of genomic information. Here, we supplement previous mass spectrometry analyses of barnacle adhesive with recently sequenced genomes to compare the adhesive proteomes of Pollicipes pollicipes (Pedunculata) and Amphibalanus amphitrite (Sessilia). Although both species contain the same broad protein categories, we detail differences that exist between these species. The barnacle-unique cement proteins show the greatest difference between species, although these differences are diminished when amino acid composition and glycosylation potential are considered. By performing an in-depth comparison of the adhesive proteomes of these distantly related barnacle species, we show their similarities and provide a roadmap for future studies examining sequence-specific differences to identify the proteins responsible for functional differences across the barnacle tree of life.


Assuntos
Adesivos/metabolismo , Proteínas de Artrópodes/metabolismo , Proteoma/metabolismo , Thoracica/classificação , Thoracica/metabolismo , Animais , Espectrometria de Massas , Proteoma/análise
9.
Front Microbiol ; 11: 710, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425905

RESUMO

Recent reports have shown that Gram-positive bacteria actively secrete spherical nanometer-sized proteoliposome membrane vesicles (MVs) into their surroundings. Though MVs are implicated in a broad range of biological functions, few studies have been conducted to examine their potential as delivery vehicles of antimicrobials. Here, we investigate the natural ability of Lactobacillus acidophilus MVs to carry and deliver bacteriocin peptides to the opportunistic pathogen, Lactobacillus delbrueckii. We demonstrate that upon treatment with lactacin B-inducing peptide, the proteome of the secreted MVs is enriched in putative bacteriocins encoded by the lab operon. Further, we show that purified MVs inhibit growth and compromise membrane integrity in L. delbrueckii, which is confirmed by confocal microscopy imaging and spectrophotometry. These results show that L. acidophilus MVs serve as conduits for antimicrobials to competing cells in the environment, suggesting a potential role for MVs in complex communities such as the gut microbiome. With the potential for controlling their payload through microbial engineering, MVs produced by L. acidophilus may be an interesting platform for effecting change in complex microbial communities or aiding in the development of new biomedical therapeutics.

10.
Front Microbiol ; 10: 2706, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31866955

RESUMO

Stable isotope probing (SIP) enables tracking the nutrient flows from isotopically labeled substrates to specific microorganisms in microbial communities. In proteomic SIP, labeled proteins synthesized by the microbial consumers of labeled substrates are identified with a shotgun proteomics approach. Here, proteomic SIP was combined with targeted metagenomic binning to reconstruct metagenome-assembled genomes (MAGs) of the microorganisms producing labeled proteins. This approach was used to track carbon flows from 13CO2 to the rhizosphere communities of Zea mays, Triticum aestivum, and Arabidopsis thaliana. Rhizosphere microorganisms that assimilated plant-derived 13C were capable of metabolic and signaling interactions with their plant hosts, as shown by their MAGs containing genes for phytohormone modulation, quorum sensing, and transport and metabolism of nutrients typical of those found in root exudates. XoxF-type methanol dehydrogenases were among the most abundant proteins identified in the rhizosphere metaproteomes. 13C-methanol proteomic SIP was used to test the hypothesis that XoxF was used to metabolize and assimilate methanol in the rhizosphere. We detected 7 13C-labeled XoxF proteins and identified methylotrophic pathways in the MAGs of 8 13C-labeled microorganisms, which supported the hypothesis. These two studies demonstrated the capability of proteomic SIP for functional characterization of active microorganisms in complex microbial communities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA