Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mov Disord ; 37(2): 325-333, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34724257

RESUMO

BACKGROUND: Rasagiline has received attention as a potential disease-modifying therapy for Parkinson's disease (PD). Whether rasagiline is disease modifying remains in question. OBJECTIVE: The main objective of this study was to determine whether rasagiline has disease-modifying effects in PD over 1 year. Secondarily we evaluated two diffusion magnetic resonance imaging pulse sequences to determine the best sequence to measure disease progression. METHODS: This prospective, randomized, double-blind, placebo-controlled trial assessed the effects of rasagiline administered at 1 mg/day over 12 months in early-stage PD. The primary outcome was 1-year change in free-water accumulation in posterior substantia nigra (pSN) measured using two diffusion magnetic resonance imaging pulse sequences, one with a repetition time (TR) of 2500 ms (short TR; n = 90) and one with a TR of 6400 ms (long TR; n = 75). Secondary clinical outcomes also were assessed. RESULTS: Absolute change in pSN free-water accumulation was not significantly different between groups (short TR: P = 0.346; long TR: P = 0.228). No significant differences were found in any secondary clinical outcomes between groups. Long TR, but not short TR, data show pSN free-water increased significantly over 1 year (P = 0.025). Movement Disorder Society Unified Parkinson's Disease Rating Scale testing of motor function, Part III increased significantly over 1 year (P = 0.009), and baseline free-water in the pSN correlated with the 1-year change in Movement Disorder Society Unified Parkinson's Disease Rating Scale testing of motor function, Part III (P = 0.004) and 1-year change in bradykinesia score (P = 0.044). CONCLUSIONS: We found no evidence that 1 mg/day rasagiline has a disease-modifying effect in PD over 1 year. We found pSN free-water increased over 1 year, and baseline free-water relates to clinical motor progression, demonstrating the importance of diffusion imaging parameters for detecting and predicting PD progression. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Imagem de Difusão por Ressonância Magnética , Progressão da Doença , Método Duplo-Cego , Humanos , Indanos/farmacologia , Indanos/uso terapêutico , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/tratamento farmacológico , Estudos Prospectivos
2.
Neuromodulation ; 25(6): 796-803, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32578304

RESUMO

OBJECTIVE: We aimed to formulate a practical clinical treatment algorithm for Holmes tremor (HT) by reviewing currently published clinical data. MATERIALS AND METHODS: We performed a systematic review of articles discussing the management of HT published between January 1990 and December 2018. We examined data from 89 patients published across 58 studies detailing the effects of pharmacological or surgical interventions on HT severity. Clinical outcomes were measured by a continuous 1-10 ranked scale. The majority of studies addressing treatment response were case series or case reports. No randomized control studies were identified. RESULTS: Our review included 24 studies focusing on pharmacologic treatments of 25 HT patients and 34 studies focusing on the effect of deep brain stimulation (DBS) in 64 patients. In the medical intervention group, the most commonly used drugs were levetiracetam, trihexyphenidyl, and levodopa. In the surgically treated group, the thalamic ventralis intermedius nucleus (VIM) and globus pallidus internus (GPi) were the most common brain targets for neuromodulation. The two targets accounted for 57.8% and 32.8% of total cases, respectively. Overall, compared to the medically treated group, DBS provided greater tremor suppression (p = 0.025) and was more effective for the management of postural tremor in HT. Moreover, GPi DBS displayed greater benefit in the resting tremor component (p = 0.042) and overall tremor reduction (p = 0.022). CONCLUSIONS: There is a highly variable response to different medical treatments in HT without randomized clinical trials available to dictate treatment decisions. A variety of medical and surgical treatment options can be considered for the management of HT. Collaborative research between different institutions and researchers are warranted and needed to improve our understanding of the pathophysiology and management of this condition. In this review, we propose a practical treatment algorithm for HT based on currently available evidence.


Assuntos
Estimulação Encefálica Profunda , Tremor , Estimulação Encefálica Profunda/efeitos adversos , Globo Pálido , Humanos , Levodopa , Núcleos Talâmicos , Tremor/etiologia
3.
Ann Neurol ; 88(2): 375-387, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32418250

RESUMO

OBJECTIVE: This study addresses an important problem in neurology, distinguishing tremor and ataxia using quantitative methods. Specifically, we aimed to quantitatively separate dysmetria, a cardinal sign of ataxia, from tremor in essential tremor (ET). METHODS: In Experiment 1, we compared 19 participants diagnosed with ET undergoing thalamic deep brain stimulation (DBS; ETDBS ) to 19 healthy controls (HC). We quantified tremor during postural tasks using accelerometry and dysmetria with fast, reverse-at-target goal-directed movements. To ensure that endpoint accuracy was unaffected by tremor, we quantified dysmetria in selected trials manifesting a smooth trajectory to the endpoint. Finally, we manipulated tremor amplitude by switching DBS ON and OFF to examine its effect on dysmetria. In Experiment 2, we compared 10 ET participants with 10 HC to determine whether we could identify and distinguish dysmetria from tremor in non-DBS ET. RESULTS: Three findings suggest that we can quantify dysmetria independently of tremor in ET. First, ETDBS and ET exhibited greater dysmetria than HC and dysmetria did not correlate with tremor (R2 < 0.01). Second, even for trials with tremor-free trajectories to the target, ET exhibited greater dysmetria than HC (p < 0.01). Third, activating DBS reduced tremor (p < 0.01) but had no effect on dysmetria (p > 0.2). INTERPRETATION: We demonstrate that dysmetria can be quantified independently of tremor using fast, reverse-at-target goal-directed movements. These results have important implications for the understanding of ET and other cerebellar and tremor disorders. Future research should examine the neurophysiological mechanisms underlying each symptom and characterize their independent contribution to disability. ANN NEUROL 2020;88:375-387.


Assuntos
Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/fisiopatologia , Tremor Essencial/diagnóstico , Tremor Essencial/fisiopatologia , Tremor/diagnóstico , Tremor/fisiopatologia , Idoso , Ataxia Cerebelar/terapia , Estimulação Encefálica Profunda/métodos , Diagnóstico Diferencial , Tremor Essencial/terapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Postura/fisiologia , Tremor/terapia
4.
Mov Disord ; 35(5): 741-751, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32281147

RESUMO

DBS is an effective neuromodulatory therapy that has been applied in various conditions, including PD, essential tremor, dystonia, Tourette syndrome, and other movement disorders. There have also been recent examples of applications in epilepsy, chronic pain, and neuropsychiatric conditions. Innovations in neuroimaging technology have been driving connectomics, an emerging whole-brain network approach to neuroscience. Two rising techniques are functional connectivity profiling and structural connectivity profiling. Functional connectivity profiling explores the operational relationships between multiple regions of the brain with respect to time and stimuli. Structural connectivity profiling approximates physical connections between different brain regions through reconstruction of axonal fibers. Through these techniques, complex relationships can be described in various disease states, such as PD, as well as in response to therapy, such as DBS. These advances have expanded our understanding of human brain function and have provided a partial in vivo glimpse into the underlying brain circuits underpinning movement and other disorders. This comprehensive review will highlight the contemporary concepts in brain connectivity as applied to DBS, as well as introduce emerging considerations in movement disorders. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Conectoma , Estimulação Encefálica Profunda , Transtornos dos Movimentos , Encéfalo/diagnóstico por imagem , Humanos , Transtornos dos Movimentos/diagnóstico por imagem , Transtornos dos Movimentos/terapia , Neuroimagem
5.
J Neurol Neurosurg Psychiatry ; 90(8): 913-919, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30846538

RESUMO

OBJECTIVE: To investigate the effects of unilateral thalamic deep brain stimulation (DBS) on walking in persons with medication-refractory essential tremor (ET). METHODS: We performed laboratory-based gait analyses on 24 persons with medication-refractory ET before and after unilateral thalamic DBS implantation. Normal and tandem walking parameters were analysed across sessions (PRE-DBS/DBS OFF/DBS ON) by repeated measures analyses of variance. Pearson's correlations assessed whether changes in walking after DBS were global (ie, related across gait parameters). Baseline characteristics, lead locations and stimulation parameters were analysed as possible contributors to gait effects. RESULTS: DBS minimally affected gait at the cohort level. However, 25% of participants experienced clinically meaningful gait worsening. Walking speed decreased by >30% in two participants and by >10% in four others. Decreased walking speed correlated with increased gait variability, indicating global gait worsening in affected participants. The worsening persisted even after the stimulation was turned off. Participants with worse baseline tandem walking performance may be more likely to experience post-DBS gait worsening; the percentage of tandem missteps at baseline was nearly three times higher and tandem walking speeds were approximately 30% slower in participants who experienced gait worsening. However, these differences in tandem walking in persons with gait worsening as compared with those without worsening were not statistically significant. Lead locations and stimulation parameters were similar in participants with and without gait worsening. CONCLUSION: Global gait worsening occurred in 25% of participants with unilateral DBS for medication-refractory ET. The effect was present on and off stimulation, likely indicating a microlesion effect.


Assuntos
Encéfalo/patologia , Estimulação Encefálica Profunda/efeitos adversos , Tremor Essencial/terapia , Transtornos Neurológicos da Marcha/etiologia , Idoso , Tremor Essencial/patologia , Tremor Essencial/fisiopatologia , Feminino , Marcha , Transtornos Neurológicos da Marcha/patologia , Humanos , Masculino
6.
Mov Disord ; 34(1): 95-104, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30345712

RESUMO

BACKGROUND: Evidence from functional imaging in essential tremor suggests that activity within parietal and motor cortices may be associated with worsening of tremor at increased visual feedback. OBJECTIVES: Examine how cortical oscillations within these regions and the connectivity between these regions is associated with worsening of tremor in essential tremor in response to high visual feedback. METHOD: The study included 24 essential tremor participants and 17 controls. We measured cortical activity and tremor magnitude at low and high feedback conditions. Cortical activity was measured using high-density electroencephalogram and isolated using source localization. RESULTS: Changes in power across feedback in the 4-12 Hz and 12-30 Hz bands were reduced within the contralateral motor cortex of essential tremor patients compared to controls. The 12-30 Hz bidirectional connectivity between the parietal and contralateral motor cortex was decreased in essential tremor patients. Worsening of tremor from low to high visual feedback was associated with 4-12 Hz activity in contralateral motor cortex. The greatest separation between groups was found when using the difference of the contralateral motor cortex activity at high and low feedback, rather than either feedback condition alone. CONCLUSION: Our findings provide new evidence that tremor in essential tremor is associated with reduced power across feedback in the motor cortex and reduced connectivity between the parietal and motor cortices. Combined with previous work on the cerebellar-thalamo-cortical motor circuit, our findings suggest that the network level disturbances associated with essential tremor extend to the cortico-cortical pathway between the parietal cortex and motor cortex. © 2018 International Parkinson and Movement Disorder Society.


Assuntos
Tremor Essencial/fisiopatologia , Retroalimentação Sensorial/fisiologia , Córtex Motor/fisiopatologia , Tremor/fisiopatologia , Idoso , Mapeamento Encefálico , Cerebelo/fisiopatologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade
8.
Neuroimage ; 144(Pt A): 164-173, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27746389

RESUMO

Accurate motor performance may depend on the scaling of distinct oscillatory activity within the motor cortex and effective neural communication between the motor cortex and other brain areas. Oscillatory activity within the beta-band (13-30Hz) has been suggested to provide distinct functional roles for attention and sensorimotor control, yet it remains unclear how beta-band and other oscillatory activity within and between cortical regions is coordinated to enhance motor performance. We explore this open issue by simultaneously measuring high-density cortical activity and elbow flexor and extensor neuromuscular activity during ballistic movements, and manipulating error using high and low visual gain across three target distances. Compared with low visual gain, high visual gain decreased movement errors at each distance. Group analyses in 3D source-space revealed increased theta-, alpha-, and beta-band desynchronization of the contralateral motor cortex and medial parietal cortex in high visual gain conditions and this corresponded to reduced movement error. Dynamic causal modeling was used to compute connectivity between motor cortex and parietal cortex. Analyses revealed that gain affected the directionally-specific connectivity across broadband frequencies from parietal to sensorimotor cortex but not from sensorimotor cortex to parietal cortex. These new findings provide support for the interpretation that broad-band oscillations in theta, alpha, and beta frequency bands within sensorimotor and parietal cortex coordinate to facilitate accurate upper limb movement. SUMMARY STATEMENT: Our findings establish a link between sensorimotor oscillations in the context of online motor performance in common source space across subjects. Specifically, the extent and distinct role of medial parietal cortex to sensorimotor beta connectivity and local domain broadband activity combine in a time and frequency manner to assist ballistic movements. These findings can serve as a model to examine whether similar source space EEG dynamics exhibit different time-frequency changes in individuals with neurological disorders that cause movement errors.


Assuntos
Ritmo beta/fisiologia , Eletroencefalografia/métodos , Atividade Motora/fisiologia , Lobo Parietal/fisiologia , Desempenho Psicomotor/fisiologia , Córtex Sensório-Motor/fisiologia , Adulto , Eletromiografia , Retroalimentação Sensorial/fisiologia , Feminino , Humanos , Masculino , Adulto Jovem
9.
Hum Brain Mapp ; 38(9): 4563-4573, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28594097

RESUMO

Cervical dystonia (CD) is the most common type of focal dystonia, causing abnormal movements of the neck and head. In this study, we used noninvasive imaging to investigate the motor system of patients with CD and uncover the neural correlates of dystonic symptoms. Furthermore, we examined whether a commonly prescribed anticholinergic medication in CD has an effect on the dystonia-related brain abnormalities. Participants included 16 patients with CD and 16 healthy age-matched controls. We collected functional MRI scans during a force task previously shown to extensively engage the motor system, and diffusion and T1-weighted MRI scans from which we calculated free-water and brain tissue densities. The dystonia group was also scanned ca. 2 h after a 2-mg dose of trihexyphenidyl. Severity of dystonia was assessed pre- and post-drug using the Burke-Fahn-Marsden Dystonia Rating Scale. Motor-related activity in CD was altered relative to controls in the primary somatosensory cortex, cerebellum, dorsal premotor and posterior parietal cortices, and occipital cortex. Most importantly, a regression model showed that increased severity of symptoms was associated with decreased functional activity of the somatosensory cortex and increased activity of the cerebellum. Structural imaging measures did not differ between CD and controls. The single dose of trihexyphenidyl altered the fMRI signal in the somatosensory cortex but not in the cerebellum. Symptom severity was not significantly reduced post-treatment. Findings show widespread changes in functional brain activity in CD and most importantly that dystonic symptoms relate to disrupted activity in the somatosensory cortex and cerebellum. Hum Brain Mapp 38:4563-4573, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Cerebelo/efeitos da radiação , Atividade Motora/fisiologia , Córtex Sensório-Motor/fisiopatologia , Torcicolo/fisiopatologia , Antidiscinéticos/uso terapêutico , Toxinas Botulínicas/uso terapêutico , Mapeamento Encefálico , Cerebelo/diagnóstico por imagem , Cerebelo/efeitos dos fármacos , Cerebelo/fisiopatologia , Estudos de Coortes , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Atividade Motora/efeitos dos fármacos , Vias Neurais/diagnóstico por imagem , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiopatologia , Fármacos Neuromusculares/uso terapêutico , Córtex Sensório-Motor/diagnóstico por imagem , Córtex Sensório-Motor/efeitos dos fármacos , Índice de Gravidade de Doença , Torcicolo/diagnóstico por imagem , Torcicolo/tratamento farmacológico , Triexifenidil/uso terapêutico
11.
Semin Neurol ; 37(2): 109-117, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28511251

RESUMO

The motor symptoms of Parkinson's disease are not limited to the cardinal symptoms of bradykinesia, rigidity, and resting tremor, but also include a variety of interrelated motor phenomena such as deficits in spatiotemporal planning and movement sequencing, scaling and timing of movements, and intermuscular coordination that can be clinically observed. Although many of these phenomena overlap, a review of the full breadth of the motor phenomenon can aid in the diagnosis and monitoring of disease progression.


Assuntos
Doença de Parkinson , Progressão da Doença , Humanos , Rigidez Muscular , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Tremor
12.
Semin Neurol ; 37(2): 215-227, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28511262

RESUMO

The overlap of signs and symptoms between Parkinson's disease and the atypical parkinsonian syndromes, such as progressive supranuclear palsy, multiple system atrophy, corticobasal syndrome and dementia with Lewy bodies, can render clinical diagnoses challenging. The continued evolution of diagnostic criteria to reflect the increasingly recognized heterogeneous presentations of these diseases further complicates timely recognition and diagnosis. In this review, we provide a diagnostic approach to the classic atypical parkinsonian syndromes, with an emphasis on the key clinical and pathological features of each and the recognition of "red flags" in the setting of recent advances in diagnosis and treatment.


Assuntos
Doença por Corpos de Lewy/diagnóstico , Atrofia de Múltiplos Sistemas/diagnóstico , Doença de Parkinson/diagnóstico , Paralisia Supranuclear Progressiva/diagnóstico , Animais , Humanos , Doença por Corpos de Lewy/complicações , Doença por Corpos de Lewy/terapia , Atrofia de Múltiplos Sistemas/complicações , Atrofia de Múltiplos Sistemas/terapia , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Paralisia Supranuclear Progressiva/complicações , Paralisia Supranuclear Progressiva/terapia
13.
Semin Neurol ; 37(2): 147-157, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28511255

RESUMO

Motor complications are a consequence of the chronic treatment of Parkinson's disease (PD) and include motor fluctuations (wearing-off phenomenon) and levodopa-induced dyskinesia. Both can have a significant impact on functionality and quality of life; thus, proper recognition and management is essential. The phenomenology and temporal relationship of motor complications to the schedule of levodopa dosing can be helpful in characterizing them. There are several therapeutic approaches to motor complications, including pharmacological and surgical options. The authors summarize the different types of motor complications according to phenomenology and the currently available medical treatments, including ongoing trials for the management of this condition.


Assuntos
Dopaminérgicos/efeitos adversos , Transtornos dos Movimentos/etiologia , Doença de Parkinson/tratamento farmacológico , Humanos
14.
Semin Neurol ; 37(2): 205-214, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28511261

RESUMO

Deep brain stimulation (DBS) is an effective therapy for Parkinson's disease patients experiencing motor fluctuations, medication-resistant tremor, and/or dyskinesia. Currently, the subthalamic nucleus and the globus pallidus internus are the two most widely used targets, with individual advantages and disadvantages influencing patient selection. Potential DBS patients are selected using the few existing guidelines and the available DBS literature, and many centers employ an interdisciplinary team review of the individual's risk-benefit profile. Programmed settings vary based on institution- or physician-specific protocols designed to maximize benefits and limit adverse effects. Expectations should be realistic and clearly defined during the evaluation process, and each bothersome symptom should be addressed in the context of building the risk-benefit profile. Current DBS research is focused on improved symptom control, the development of newer technologies, and the improved efficiency of stimulation delivery. Techniques deliver stimulation in a more personalized way, and methods of adaptive DBS such as closed-loop approaches are already on the horizon.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson/terapia , Globo Pálido , Humanos , Núcleo Subtalâmico , Resultado do Tratamento
15.
Neuromodulation ; 19(4): 343-56, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27000764

RESUMO

OBJECTIVES: Evidence suggests that nonconventional programming may improve deep brain stimulation (DBS) therapy for movement disorders. The primary objective was to assess feasibility of testing the tolerability of several nonconventional settings in Parkinson's disease (PD) and essential tremor (ET) subjects in a single office visit. Secondary objectives were to explore for potential efficacy signals and to assess the energy demand on the implantable pulse-generators (IPGs). MATERIALS AND METHODS: A custom firmware (FW) application was developed and acutely uploaded to the IPGs of eight PD and three ET subjects, allowing delivery of several nonconventional DBS settings, including narrow pulse widths, square biphasic pulses, and irregular pulse patterns. Standard clinical rating scales and several objective measures were used to compare motor outcomes with sham, clinically-optimal and nonconventional settings. Blinded and randomized testing was conducted in a traditional office setting. RESULTS: Overall, the nonconventional settings were well tolerated. Under these conditions it was also possible to detect clinically-relevant differences in DBS responses using clinical rating scales but not objective measures. Compared to the clinically-optimal settings, some nonconventional settings appeared to offer similar benefit (e.g., narrow pulse widths) and others lesser benefit. Moreover, the results suggest that square biphasic pulses may deliver greater benefit. No unexpected IPG efficiency disadvantages were associated with delivering nonconventional settings. CONCLUSIONS: It is feasible to acutely screen nonconventional DBS settings using controlled study designs in traditional office settings. Simple IPG FW upgrades may provide more DBS programming options for optimizing therapy. Potential advantages of narrow and biphasic pulses deserve follow up.


Assuntos
Estimulação Encefálica Profunda/métodos , Tremor Essencial/terapia , Doença de Parkinson/terapia , Idoso , Fenômenos Biofísicos , Estudos de Coortes , Metabolismo Energético/fisiologia , Globo Pálido/fisiologia , Humanos , Pessoa de Meia-Idade , Projetos Piloto , Estatísticas não Paramétricas , Resultado do Tratamento
16.
BMC Neurol ; 15: 104, 2015 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-26141135

RESUMO

BACKGROUND: Aspiration pneumonia is an important cause of morbidity and mortality in Parkinson's disease (PD). Clinical characteristics of PD patients in addition to specific alterations in swallowing mechanisms contribute to higher swallowing times and impairment in the effective clearance of the airway. These issues may render patients more prone to dysphagia and aspiration events. We aimed to determine the frequency of aspiration events in a hospitalized PD cohort, and to report the number of in-hospital swallow evaluations. METHODS: A retrospective single center chart review of 212 PD patients who had 339 hospital encounters was performed from January 2011 to March 2013. Demographics, clinical characteristics, and reasons for encounters were documented. The number of in-hospital aspiration events and the number of swallowing evaluations and also the implementation of aspiration precautions were recorded. RESULTS: The cohort had a mean age of 74.1 (SD = 10.1) years with mean disease duration of 6 (SD = 6.3) years. Fifty-two hospital encounters (15.3%) were related to a pulmonary cause. In-hospital aspiration pneumonia events were reported in 8 (2.4%) of the total encounters. Swallow evaluations were performed in 25% of all cases, and aspiration precautions were initiated in 32% of the encounters. The data revealed that 1/8 patient had swallowing evaluations performed prior to an aspiration event. CONCLUSIONS: In-hospital aspiration pneumonia events were reported in 2.4% of the hospitalized PD cohort. Preventive measures and precautions were not routinely performed, however rates of aspiration were relatively low. The results highlight the need for more research into screening and monitoring of swallowing problems in PD patients during hospital encounters.


Assuntos
Transtornos de Deglutição/etiologia , Doença de Parkinson/complicações , Pneumonia Aspirativa/epidemiologia , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Deglutição , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pneumonia Aspirativa/etiologia , Estudos Retrospectivos
17.
Curr Neurol Neurosci Rep ; 13(11): 400, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24046183

RESUMO

Significant advances have allowed diffusion magnetic resonance imaging (MRI) to evolve into a powerful tool in the field of movement disorders that can be used to study disease states and connectivity between brain regions. Diffusion MRI is a promising potential biomarker for Parkinson's disease and other forms of parkinsonism, and may allow the distinction of different forms of parkinsonism. Techniques such as tractography have contributed to our current thinking regarding the pathophysiology of dystonia and possible mechanisms of penetrance. Diffusion MRI measures could potentially assist in monitoring disease progression in Huntington's disease, and in uncovering the nature of the processes and structures involved the development of essential tremor. The ability to represent structural connectivity in vivo also makes diffusion MRI an ideal adjunctive tool for the surgical treatment of movement disorders. We review recent studies using diffusion MRI in movement disorders research and present the current state of the science as well as future directions.


Assuntos
Imagem de Difusão por Ressonância Magnética/tendências , Transtornos dos Movimentos/diagnóstico , Transtornos dos Movimentos/metabolismo , Animais , Ensaios Clínicos como Assunto/tendências , Imagem de Difusão por Ressonância Magnética/estatística & dados numéricos , Humanos , Transtornos dos Movimentos/epidemiologia
18.
Parkinsonism Relat Disord ; 109: 105346, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36966051

RESUMO

INTRODUCTION: Deep brain stimulation (DBS) is an effective treatment for Parkinson's disease (PD), but its efficacy is tied to DBS programming, which is often time consuming and burdensome for patients, caregivers, and clinicians. Our aim is to test whether the Mobile Application for PD DBS (MAP DBS), a clinical decision support system, can improve programming. METHODS: We conducted an open-label, 1:1 randomized, controlled, multicenter clinical trial comparing six months of SOC standard of care (SOC) to six months of MAP DBS-aided programming. We enrolled patients between 30 and 80 years old who received DBS to treat idiopathic PD at six expert centers across the United States. The primary outcome was time spent DBS programming and secondary outcomes measured changes in motor symptoms, caregiver strain and medication requirements. RESULTS: We found a significant reduction in initial visit time (SOC: 43.8 ± 28.9 min n = 37, MAP DBS: 27.4 ± 13.0 min n = 35, p = 0.001). We did not find a significant difference in total programming time between the groups over the 6-month study duration. MAP DBS-aided patients experienced a significantly larger reduction in UPDRS III on-medication scores (-7.0 ± 7.9) compared to SOC (-2.7 ± 6.9, p = 0.01) at six months. CONCLUSION: MAP DBS was well tolerated and improves key aspects of DBS programming time and clinical efficacy.


Assuntos
Estimulação Encefálica Profunda , Aplicativos Móveis , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Doença de Parkinson/complicações , Resultado do Tratamento
19.
Cerebellum ; 11(4): 872-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22230985

RESUMO

Essential tremor (ET) is among the most prevalent neurological diseases, yet the location of the primary disease substrate continues to be a matter of debate. The presence of intention tremor and mild gait ataxia suggests an underlying abnormality of the cerebellum and/or cerebellar pathways. Uncovering additional signs of cerebellar dysfunction would further substantiate the proposition that ET is a disease of the cerebellar system. We evaluated 145 ET cases and 34 normal controls clinically and by computerized spiral analysis. Spiral analysis is a program that objectively characterizes kinematic and physiologic features of hand-drawn spirals using specific calculated spiral indices that correlate with spiral shape and motor execution. We used the spiral width variability index (SWVI), a measure of loop-to-loop spiral width variation with the influence of tremor removed, as a metric of drawing ataxia. The SWVI was higher in cases than controls (0.91 ± 1.94, median=0.46 vs. 0.40 ± 0.29, median=0.30, p<0.001). Cases with higher SWVI also had greater intention tremor during the finger-nose-finger maneuver, r=0.27, p=0.001), and cases with intention tremor of the head had the highest SWVI (1.57 ± 3.44, median=0.51, p<0.001). There was a modest association between SWVI and number of missteps during tandem gait (r=0.16, p=0.06). The primary anatomical substrate for ET continues to be a matter of speculation, yet these and other clinical data lend support to the notion that there is an underlying abnormality of the cerebellum and/or its pathways.


Assuntos
Doenças Cerebelares/fisiopatologia , Cerebelo/fisiopatologia , Tremor Essencial/fisiopatologia , Mãos/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos/fisiologia , Feminino , Humanos , Masculino , Análise e Desempenho de Tarefas
20.
Semin Neurol ; 37(2): 107-108, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28511250
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA