Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 161(5)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39087534

RESUMO

Vibrational spectroscopy of protein structure often utilizes 13C18O-labeling of backbone carbonyls to further increase structural resolution. However, sidechains such as arginine, aspartate, and glutamate absorb within the same spectral region, complicating the analysis of isotope-labeled peaks. In this study, we report that the waiting time between pump and probe pulses in two-dimensional infrared spectroscopy can be used to suppress sidechain modes in favor of backbone amide I' modes based on differences in vibrational lifetimes. Furthermore, differences in the lifetimes of 13C18O-amide I' modes can aid in the assignment of secondary structure for labeled residues. Using model disordered and ß-sheet peptides, it was determined that while ß-sheets exhibit a longer lifetime than disordered structures, amide I' modes in both secondary structures exhibit longer lifetimes than sidechain modes. Overall, this work demonstrates that collecting 2D IR data at delayed waiting times, based on differences in vibrational lifetime between modes, can be used to effectively suppress interfering sidechain modes and further identify secondary structures.


Assuntos
Espectrofotometria Infravermelho , Vibração , Espectrofotometria Infravermelho/métodos , Peptídeos/química , Estrutura Secundária de Proteína
2.
J Chem Phys ; 158(9): 091101, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36889961

RESUMO

As nanomaterials become more prevalent in both industry and medicine, it is crucial to fully understand their health risks. One area of concern is the interaction of nanoparticles with proteins, including their ability to modulate the uncontrolled aggregation of amyloid proteins associated with diseases, such as Alzheimer's disease and type II diabetes, and potentially extend the lifetime of cytotoxic soluble oligomers. This work demonstrates that two-dimensional infrared spectroscopy and 13C18O isotope labeling can be used to follow the aggregation of human islet amyloid polypeptide (hIAPP) in the presence of gold nanoparticles (AuNPs) with single-residue structural resolution. 60 nm AuNPs were found to inhibit hIAPP, tripling the aggregation time. Furthermore, calculating the actual transition dipole strength of the backbone amide I' mode reveals that hIAPP forms a more ordered aggregate structure in the presence of AuNPs. Ultimately, such studies can provide insight into how mechanisms of amyloid aggregation are altered in the presence of nanoparticles, furthering our understanding of protein-nanoparticle interactions.


Assuntos
Diabetes Mellitus Tipo 2 , Nanopartículas Metálicas , Humanos , Ouro , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Proteínas Amiloidogênicas , Amiloide/química , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA