Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Vision (Basel) ; 7(3)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37489329

RESUMO

Seasonal changes and varying degree of corneal hydration has been linked to excimer laser corneal ablation rates. The use of PMMA as a calibration material in refractive lasers is well established. However, PMMA ablation may be equally affected by seasonal variations in temperature and humidity, in turn affecting the calibration process. The aim of this work is to analyze the effect of seasonal changes in PMMA performance using SCHWIND AMARIS laser system. PET and PMMA ablations conducted in climate-controlled environment with 826 consecutive AMARIS systems manufactured over 6 years were retrospectively analyzed. Lasers were stratified depending on seasons and months of the year. Metrics like single laser pulse fluence, nominal number of laser pulses, mean performance, standard deviation, and technical performance of system were compared to global average values. Cyclic winter-summer variation was confirmed with seasons winter and summer showing statistically significant variations with respect to global values. Metric technical performance showed deeper PMMA ablation performance in summertime, with maximum seasonal deviation of 6%. Results were consistently confirmed in seasonal as well as monthly analyses. These findings could help minimize variance among laser systems by implementing compensation factors depending on seasons such that laser systems installed worldwide follow the same trend line of variation.

2.
Am J Physiol Renal Physiol ; 303(5): F783-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22696603

RESUMO

Determination of glomerular filtration rate (GFR) in conscious mice is cumbersome for the experimenter and stressful for the animals. Here we report on a simple new technique allowing the transcutaneous measurement of GFR in conscious mice. This approach extends our previously developed technique for rats to mice. The technique relies on a miniaturized device equipped with an internal memory that permits the transcutaneous measurement of the elimination kinetics of the fluorescent renal marker FITC-sinistrin. This device is described and validated compared with FITC-sinistrin plasma clearance in healthy, unilaterally nephrectomized and pcy mice. In summary, we describe a technique allowing the measurement of renal function in freely moving mice independent of blood or urine sampling as well as of laboratory assays.


Assuntos
Fluoresceínas , Taxa de Filtração Glomerular , Rim/fisiologia , Oligossacarídeos , Animais , Estado de Consciência , Corantes Fluorescentes , Camundongos , Miniaturização , Oligossacarídeos/urina , Fenômenos Fisiológicos do Sistema Urinário
3.
Kidney Int ; 82(3): 314-20, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22513822

RESUMO

Constant infusion clearance techniques using exogenous renal markers are considered the gold standard for assessing the glomerular filtration rate. Here we describe a constant infusion clearance method in rats allowing the real-time monitoring of steady-state conditions using an automated closed-loop approach based on the transcutaneous measurement of the renal marker FITC-sinistrin. In order to optimize parameters to reach steady-state conditions as fast as possible, a Matlab-based simulation tool was established. Based on this, a real-time feedback-regulated approach for constant infusion clearance monitoring was developed. This was validated by determining hourly FITC-sinistrin plasma concentrations and the glomerular filtration rate in healthy and unilaterally nephrectomized rats. The transcutaneously assessed FITC-sinistrin fluorescence signal was found to reflect the plasma concentration. Our method allows the precise determination of the onset of steady-state marker concentration. Moreover, the steady state can be monitored and controlled in real time for several hours. This procedure is simple to perform since no urine samples and only one blood sample are required. Thus, we developed a real-time feedback-based system for optimal regulation and monitoring of a constant infusion clearance technique.


Assuntos
Taxa de Filtração Glomerular , Testes de Função Renal/métodos , Rim/fisiologia , Animais , Simulação por Computador , Retroalimentação Fisiológica , Fluoresceína-5-Isotiocianato/administração & dosagem , Fluoresceína-5-Isotiocianato/farmacocinética , Infusões Parenterais , Masculino , Modelos Biológicos , Nefrectomia , Oligossacarídeos/administração & dosagem , Oligossacarídeos/sangue , Sistemas On-Line , Ratos , Ratos Sprague-Dawley
4.
J Appl Clin Med Phys ; 13(3): 3752, 2012 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-22584175

RESUMO

Digital tomosynthesis (DTS) was evaluated as an alternative to cone-beam computed tomography (CBCT) for patient setup. DTS is preferable when there are constraints with setup time, gantry-couch clearance, and imaging dose using CBCT. This study characterizes DTS data acquisition and registration parameters for the setup of breast cancer patients using nonclinical Varian DTS software. DTS images were reconstructed from CBCT projections acquired on phantoms and patients with surgical clips in the target volume. A shift-and-add algorithm was used for DTS volume reconstructions, while automated cross-correlation matches were performed within Varian DTS software. Triangulation on two short DTS arcs separated by various angular spread was done to improve 3D registration accuracy. Software performance was evaluated on two phantoms and ten breast cancer patients using the registration result as an accuracy measure; investigated parameters included arc lengths, arc orientations, angular separation between two arcs, reconstruction slice spacing, and number of arcs. The shifts determined from DTS-to-CT registration were compared to the shifts based on CBCT-to-CT registration. The difference between these shifts was used to evaluate the software accuracy. After findings were quantified, optimal parameters for the clinical use of DTS technique were determined. It was determined that at least two arcs were necessary for accurate 3D registration for patient setup. Registration accuracy of 2 mm was achieved when the reconstruction arc length was > 5° for clips with HU ≥ 1000; larger arc length (≥ 8°) was required for very low HU clips. An optimal arc separation was found to be ≥ 20° and optimal arc length was 10°. Registration accuracy did not depend on DTS slice spacing. DTS image reconstruction took 10-30 seconds and registration took less than 20 seconds. The performance of Varian DTS software was found suitable for the accurate setup of breast cancer patients. Optimal data acquisition and registration parameters were determined.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Software , Tomografia Computadorizada de Feixe Cônico , Feminino , Humanos
5.
Int J Radiat Oncol Biol Phys ; 112(2): 475-486, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34530092

RESUMO

PURPOSE: Persistent immunosuppression in the tumor microenvironment is a major limitation to boosting the abscopal effect, whereby radiation therapy at 1 site can lead to regression of tumors at distant sites. Here, we investigate the use of radiation and immunogenic biomaterials (IBM) targeting only the gross tumor volume/subvolume for boosting the abscopal effect in immunologically cold tumors. METHODS AND MATERIALS: To evaluate the abscopal effect, 2 syngeneic contralateral tumors were implanted in each mouse, where only 1 tumor was treated. IBM was administered to the treated tumor with 1 fraction of radiation and results were compared, including as a function of different radiation therapy field sizes. The IBM was designed similar to fiducial markers using immunogenic polymer components loaded with anti-CD40 agonist. Tumor volumes of both treated and untreated tumors were measured over time, along with survival and corresponding immune cell responses. RESULTS: Results showed that radiation with IBM administered to the gross tumor subvolume can effectively boost abscopal responses in both pancreatic and prostate cancers, significantly increasing survival (P < .0001 and P < .001, respectively). Results also showed equal or superior abscopal responses when using field sizes smaller than the gross tumor volume compared with irradiating the whole tumor volume. These results were buttressed by observation of higher infiltration of cytotoxic CD8+ T-lymphocytes in the treated tumors (P < .0001) and untreated tumors (P < .0001) for prostate cancer. Significantly higher infiltration was also observed in treated tumors (P < .0001) and untreated tumors P < .01) for pancreatic cancer. Moreover, the immune responses were accompanied by a positive shift of proinflammatory cytokines in both prostate and pancreatic tumors. CONCLUSIONS: The approach targeting gross tumor subvolumes with radiation and IBM offers opportunity for boosting the abscopal effect while significantly minimizing healthy tissue toxicity. This approach proffers a radioimmunotherapy dose-painting strategy that can be developed for overcoming current barriers of immunosuppression especially for immunologically cold tumors.


Assuntos
Materiais Biocompatíveis , Neoplasias , Animais , Materiais Biocompatíveis/uso terapêutico , Linfócitos T CD8-Positivos , Masculino , Camundongos , Radioimunoterapia , Carga Tumoral , Microambiente Tumoral
6.
Kidney Int ; 79(11): 1254-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21368744

RESUMO

Determination of the urinary or plasma clearance of exogenous renal markers, such as inulin or iohexol, is considered to be the gold standard for glomerular filtration rate (GFR) measurement. Here, we describe a technique allowing determination of renal function based on transcutaneously measured elimination kinetics of fluorescein isothiocyanate (FITC)-sinistrin, the FITC-labeled active pharmaceutical ingredient of a commercially available marker of GFR. A low cost device transcutaneously excites FITC-sinistrin at 480 nm and detects the emitted light through the skin at 520 nm. A radio-frequency transmission allows remote monitoring and real-time analysis of FITC-sinistrin excretion as a marker of renal function. Due to miniaturization, the whole device fits on the back of freely moving rats, and requires neither blood sampling nor laboratory assays. As proof of principle, comparative measurements of transcutaneous and plasma elimination kinetics of FITC-sinistrin were compared in freely moving healthy rats, rats showing reduced kidney function due to unilateral nephrectomy and PKD/Mhm rats with cystic kidney disease. Results show highly comparable elimination half-lives and GFR values in all animal groups. Bland-Altman analysis of enzymatically compared with transcutaneously measured GFR found a mean difference (bias) of 0.01 and a -0.30 to 0.33 ml/min per 100 g body weight with 95% limit of agreement. Thus, with this device, renal function can be reliably measured in freely moving rats eliminating the need for and influence of anesthesia on renal function.


Assuntos
Fluoresceína-5-Isotiocianato , Corantes Fluorescentes , Taxa de Filtração Glomerular , Rim/fisiopatologia , Monitorização Ambulatorial/métodos , Oligossacarídeos , Doenças Renais Policísticas/diagnóstico , Doenças Renais Policísticas/fisiopatologia , Animais , Estado de Consciência , Modelos Animais de Doenças , Desenho de Equipamento , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/farmacocinética , Corantes Fluorescentes/farmacocinética , Rim/metabolismo , Rim/cirurgia , Miniaturização , Modelos Biológicos , Monitorização Ambulatorial/instrumentação , Nefrectomia , Oligossacarídeos/farmacocinética , Doenças Renais Policísticas/metabolismo , Ratos
7.
Phys Med ; 76: 236-242, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32731132

RESUMO

PURPOSE: Tumor-associated antigens are a promising target of immunotherapy approaches for cancer treatments but rely on sufficient expression of the target antigen. This study investigates the expression of the carcinoembryonic antigen (CEA) on the surface of irradiated lung cancer cells in vitro using gold nanoparticles as radio-enhancer. METHODS: Human lung carcinoma cells A549 were irradiated and expression of CEA on the cell surface measured by flow cytometry 3 h, 24 h, and 72 h after irradiation to doses of 2 Gy, 6 Gy, 10 Gy, and 20 Gy in the presence or absence of 0.1 mg/ml or 0.5 mg/ml gold nanoparticles. CEA expression was measured as median fluorescent intensity and percentage of CEA-positive cells. RESULTS: An increase in CEA expression was observed with both increasing radiation dose and time. There was doubling in median fluorescent intensity 24 h after 20 Gy irradiation and 72 h after 6 Gy irradiation. Use of gold nanoparticles resulted in additional significant increase in CEA expression. Change in cell morphology included swelling of cells and increased internal complexity in accordance with change in CEA expression. CONCLUSIONS: This study showed an increase in CEA expression on human lung carcinoma cells following irradiation. Increase in expression was observed with increasing radiation dose and in a time dependent manner up to 72 h post irradiation. The results further showed that gold nanoparticles can significantly increase CEA expression following radiotherapy.


Assuntos
Neoplasias Pulmonares , Nanopartículas Metálicas , Antígeno Carcinoembrionário , Ouro , Humanos , Pulmão , Neoplasias Pulmonares/radioterapia
8.
Z Med Phys ; 19(4): 264-76, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19962084

RESUMO

PURPOSE: Interfractional organ motion and patient positioning errors during prostate radiotherapy can have deleterious clinical consequences. It has become clinical practice to re-position the patient with image-guided translational position correction before each treatment to compensate for those errors. However, tilt errors can only be corrected with table corrections in six degrees of freedom or "full" adaptive treatment planning strategies. Organ shape deformations can only be corrected by "full" plan adaptation. This study evaluates the potential of instant treatment plan adaptation (fast isodose line adaptation with real-time dose manipulating tools) based on cone-beam CT (CBCT) to further improve treatment quality. METHODS AND MATERIALS: Using in-house software, CBCTs were modified to approximate a correct density calibration. To evaluate the dosimetric accuracy, dose distributions based on CBCTs were compared with dose distributions calculated on conventional planning CTs (PCT) for four datasets (one inhomogeneous phantom, three patient datasets). To determine the potential dosimetric benefit of a "full" plan adaptation over translational position correction, dose distributions were re-optimized using graphical "online" dose modification tools for three additional patients' CT-datasets with a substantially distended rectum while the original plans have been created with an empty rectum (single treatment fraction estimates). RESULTS: Absolute dose deviations of up to 51% in comparison to the PCT were observed when uncorrected CBCTs were used for replanning. After density calibration of the CBCTs, 97% of the dose deviations were

Assuntos
Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Tomografia Computadorizada por Raios X/métodos , Humanos , Masculino , Sistemas On-Line , Posicionamento do Paciente , Imagens de Fantasmas , Próstata/anatomia & histologia , Neoplasias da Próstata/diagnóstico por imagem , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Reto/anatomia & histologia , Reto/diagnóstico por imagem
9.
Z Med Phys ; 28(2): 110-120, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29429610

RESUMO

PURPOSE: To establish a fully automated kV-MV CBCT imaging method on a clinical linear accelerator that allows image acquisition of thoracic targets for patient positioning within one breath-hold (∼15s) under realistic clinical conditions. METHODS AND MATERIALS: Our previously developed FPGA-based hardware unit which allows synchronized kV-MV CBCT projection acquisition is connected to a clinical linear accelerator system via a multi-pin switch; i.e. either kV-MV imaging or conventional clinical mode can be selected. An application program was developed to control the relevant linac parameters automatically and to manage the MV detector readout as well as the gantry angle capture for each MV projection. The kV projections are acquired with the conventional CBCT system. GPU-accelerated filtered backprojection is performed separately for both data sets. After appropriate grayscale normalization both modalities are combined and the final kV-MV volume is re-imported in the CBCT system to enable image matching. To demonstrate adequate geometrical accuracy of the novel imaging system the Penta-Guide phantom QA procedure is performed. Furthermore, a human plastinate and different tumor shapes in a thorax phantom are scanned. Diameters of the known tumor shapes are measured in the kV-MV reconstruction. RESULTS: An automated kV-MV CBCT workflow was successfully established in a clinical environment. The overall procedure, from starting the data acquisition until the reconstructed volume is available for registration, requires ∼90s including 17s acquisition time for 100° rotation. It is very simple and allows target positioning in the same way as for conventional CBCT. Registration accuracy of the QA phantom is within ±1mm. The average deviation from the known tumor dimensions measured in the thorax phantom was 0.7mm which corresponds to an improvement of 36% compared to our previous kV-MV imaging system. CONCLUSIONS: Due to automation the kV-MV CBCT workflow is speeded up by a factor of >10 compared to the manual approach. Thus, the system allows a simple, fast and reliable imaging procedure and fulfills all requirements to be successfully introduced into the clinical workflow now, enabling single-breath-hold volume imaging.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Neoplasias Pulmonares/radioterapia , Radioterapia Guiada por Imagem/instrumentação , Radioterapia Guiada por Imagem/métodos , Automação , Humanos
10.
Invest Ophthalmol Vis Sci ; 58(4): 2021-2037, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28384723

RESUMO

Purpose: Controversial opinions exist regarding optimum laser beam characteristics for achieving smoother ablations in laser-based vision correction. The purpose of the study was to outline a rigorous simulation model for simulating shot-by-shot ablation process. The impact of laser beam characteristics like super Gaussian order, truncation radius, spot geometry, spot overlap, and lattice geometry were tested on ablation smoothness. Methods: Given the super Gaussian order, the theoretical beam profile was determined following Lambert-Beer model. The intensity beam profile originating from an excimer laser was measured with a beam profiler camera. For both, the measured and theoretical beam profiles, two spot geometries (round and square spots) were considered, and two types of lattices (reticular and triangular) were simulated with varying spot overlaps and ablated material (cornea or polymethylmethacrylate [PMMA]). The roughness in ablation was determined by the root-mean-square per square root of layer depth. Results: Truncating the beam profile increases the roughness in ablation, Gaussian profiles theoretically result in smoother ablations, round spot geometries produce lower roughness in ablation compared to square geometry, triangular lattices theoretically produce lower roughness in ablation compared to the reticular lattice, theoretically modeled beam profiles show lower roughness in ablation compared to the measured beam profile, and the simulated roughness in ablation on PMMA tends to be lower than on human cornea. For given input parameters, proper optimum parameters for minimizing the roughness have been found. Conclusions: Theoretically, the proposed model can be used for achieving smoothness with laser systems used for ablation processes at relatively low cost. This model may improve the quality of results and could be directly applied for improving postoperative surface quality.


Assuntos
Córnea/cirurgia , Lasers de Excimer/uso terapêutico , Modelos Teóricos , Miopia/cirurgia , Ceratectomia Fotorrefrativa/métodos , Humanos
11.
Med Phys ; 44(9): 4452-4462, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28626978

RESUMO

PURPOSE: In this study, we introduce a novel, fast, inverse treatment planning strategy for interstitial high-dose-rate (HDR) brachytherapy with multiple regions of interest solely based on dose-volume-histogram-related dosimetric measures (DMs). METHODS: We present a new problem formulation of the objective function that approximates the indicator variables of the standard DM optimization problem with a smooth logistic function. This problem is optimized by standard gradient-based methods. The proposed approach is then compared against state-of-the-art optimization strategies. RESULTS: All generated plans fulfilled prescribed DMs for all organs at risk. Compared to clinical practice, a statistically significant improvement (p=0.01) in coverage of target structures was achieved. Simultaneously, DMs representing high-dose regions were significantly reduced (p=0.01). The novel optimization strategies run-time was (0.8 ± 0.3) s and thus outperformed the best competing strategies of the state of the art. In addition, the novel DM-based approach was associated with a statistically significant (p=0.01) increase in the number of active dwell positions and a decrease in the maximum dwell time. CONCLUSIONS: The generated plans showed a clinically significant increase in target coverage with fewer hot spots, with an optimization time approximately three orders of magnitude shorter than manual optimization currently used in clinical practice. As optimization is solely based on DMs, intuitive, interactive, real-time treatment planning, which motivated the adoption of manual optimization in our clinic, is possible.


Assuntos
Braquiterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Humanos , Radiometria
12.
Med Phys ; 44(12): 6117-6127, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28921538

RESUMO

PURPOSE: Interstitial high-dose rate (HDR) brachytherapy is an important therapeutic strategy for the treatment of locally advanced gynecologic (GYN) cancers. The outcome of this therapy is determined by the quality of dose distribution achieved. This paper focuses on a novel yet simple heuristic for catheter selection for GYN HDR brachytherapy and their comparison against state of the art optimization strategies. The proposed technique is intended to act as a decision-supporting tool to select a favorable needle configuration. MATERIALS: The presented heuristic for catheter optimization is based on a shrinkage-type algorithm (SACO). It is compared against state of the art planning in a retrospective study of 20 patients who previously received image-guided interstitial HDR brachytherapy using a Syed Neblett template. From those plans, template orientation and position are estimated via a rigid registration of the template with the actual catheter trajectories. All potential straight trajectories intersecting the contoured clinical target volume (CTV) are considered for catheter optimization. Retrospectively generated plans and clinical plans are compared with respect to dosimetric performance and optimization time. RESULTS: All plans were generated with one single run of the optimizer lasting 0.6-97.4 s. Compared to manual optimization, SACO yields a statistically significant (P ≤ 0.05) improved target coverage while at the same time fulfilling all dosimetric constraints for organs at risk (OARs). Comparing inverse planning strategies, dosimetric evaluation for SACO and "hybrid inverse planning and optimization" (HIPO), as gold standard, shows no statistically significant difference (P > 0.05). However, SACO provides the potential to reduce the number of used catheters without compromising plan quality. CONCLUSION: The proposed heuristic for needle selection provides fast catheter selection with optimization times suited for intraoperative treatment planning. Compared to manual optimization, the proposed methodology results in fewer catheters without a clinically significant loss in plan quality. The proposed approach can be used as a decision support tool that guides the user to find the ideal number and configuration of catheters.


Assuntos
Braquiterapia/instrumentação , Catéteres , Neoplasias dos Genitais Femininos/diagnóstico por imagem , Neoplasias dos Genitais Femininos/radioterapia , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/instrumentação , Algoritmos , Feminino , Humanos , Radiometria , Dosagem Radioterapêutica
13.
Int J Radiat Oncol Biol Phys ; 97(3): 624-637, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28126309

RESUMO

Radiation therapy (RT) is a crucial component of cancer care, used in the treatment of over 50% of cancer patients. Patients undergoing image guided RT or brachytherapy routinely have inert RT biomaterials implanted into their tumors. The single function of these RT biomaterials is to ensure geometric accuracy during treatment. Recent studies have proposed that the inert biomaterials could be upgraded to "smart" RT biomaterials, designed to do more than 1 function. Such smart biomaterials include next-generation fiducial markers, brachytherapy spacers, and balloon applicators, designed to respond to stimuli and perform additional desirable functions like controlled delivery of therapy-enhancing payloads directly into the tumor subvolume while minimizing normal tissue toxicities. More broadly, smart RT biomaterials may include functionalized nanoparticles that can be activated to boost RT efficacy. This work reviews the rationale for smart RT biomaterials, the state of the art in this emerging cross-disciplinary research area, challenges and opportunities for further research and development, and a purview of potential clinical applications. Applications covered include using smart RT biomaterials for boosting cancer therapy with minimal side effects, combining RT with immunotherapy or chemotherapy, reducing treatment time or health care costs, and other incipient applications.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Braquiterapia/métodos , Marcadores Fiduciais , Radioterapia Guiada por Imagem/métodos , Inteligência Artificial , Humanos , Nanopartículas
14.
PLoS One ; 12(11): e0187710, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29125857

RESUMO

PURPOSE: Combined ultrafast 90°+90° kV-MV-CBCT within single breath-hold of 15s has high clinical potential for accelerating imaging for lung cancer patients treated with deep inspiration breath-hold (DIBH). For clinical feasibility of kV-MV-CBCT, dose exposure has to be small compared to prescribed dose. In this study, kV-MV dose output is evaluated and compared to clinically-established kV-CBCT. METHODS: Accurate dose calibration was performed for kV and MV energy; beam quality was determined. For direct comparison of MV and kV dose output, relative biological effectiveness (RBE) was considered. CT dose index (CTDI) was determined and measurements in various representative locations of an inhomogeneous thorax phantom were performed to simulate the patient situation. RESULTS: A measured dose of 20.5mGE (Gray-equivalent) in the target region was comparable to kV-CBCT (31.2mGy for widely-used, and 9.1mGy for latest available preset), whereas kV-MV spared healthy tissue and reduced dose to 6.6mGE (30%) due to asymmetric dose distribution. The measured weighted CTDI of 12mGE for kV-MV lay in between both clinical presets. CONCLUSIONS: Dosimetric properties were in agreement with established imaging techniques, whereas exposure to healthy tissue was reduced. By reducing the imaging time to a single breath-hold of 15s, ultrafast combined kV-MV CBCT shortens patient time at the treatment couch and thus improves patient comfort. It is therefore usable for imaging of hypofractionated lung DIBH patients.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Imagens de Fantasmas , Relação Dose-Resposta à Radiação , Humanos
15.
PLoS One ; 8(8): e71519, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977062

RESUMO

Measuring renal function in laboratory animals using blood and/or urine sampling is not only labor-intensive but puts also a strain on the animal. Several approaches for fluorescence based transcutaneous measurement of the glomerular filtration rate (GFR) in laboratory animals have been developed. They allow the measurement of GFR based on the elimination kinetics of fluorescent exogenous markers. None of the studies dealt with the reproducibility of the measurements in the same animals. Therefore, the reproducibility of a transcutaneous GFR assessment method was investigated using the fluorescent renal marker FITC-Sinistrin in conscious mice in the present study. We performed two transcutaneous GFR measurements within three days in five groups of mice (Balb/c, C57BL/6, SV129, NMRI at 3-4 months of age, and a group of 24 months old C57BL/6). Data were evaluated regarding day-to-day reproducibility as well as intra- and inter-strain variability of GFR and the impact of age on these parameters. No significant differences between the two subsequent GFR measurements were detected. Fastest elimination for FITC-Sinistrin was detected in Balb/c with significant differences to C57BL/6 and SV129 mice. GFR decreased significantly with age in C57BL/6 mice. Evaluation of GFR in cohorts of young and old C57BL/6 mice from the same supplier showed high consistency of GFR values between groups. Our study shows that the investigated technique is a highly reproducible and reliable method for repeated GFR measurements in conscious mice. This gentle method is easily used even in old mice and can be used to monitor the age-related decline in GFR.


Assuntos
Estado de Consciência/fisiologia , Testes de Função Renal , Pele/metabolismo , Envelhecimento/fisiologia , Animais , Fluoresceínas/metabolismo , Taxa de Filtração Glomerular/fisiologia , Meia-Vida , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Oligossacarídeos/metabolismo , Reprodutibilidade dos Testes
16.
Phys Med Biol ; 55(15): 4203-17, 2010 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-20616405

RESUMO

Long image acquisition times of 60-120 s for cone-beam CT (CBCT) limit the number of patients with lung cancer who can undergo volume image guidance under breathhold. We developed a low-dose dual-energy kilovoltage-megavoltage-cone-beam CT (kVMV-CBCT) based on a clinical treatment unit reducing imaging time to < or =15 s. Simultaneous kVMV-imaging was achieved by dedicated synchronization hardware controlling the output of the linear accelerator (linac) based on detector panel readout signals, preventing imaging artifacts from interference of the linac's MV-irradiation and panel readouts. Optimization was performed to minimize the imaging dose. Single MV-projections, reconstructed MV-CBCT images and images of simultaneous 90 degrees kV- and 90 degrees MV-CBCT (180 degrees kVMV-CBCT) were acquired with different parameters. Image quality and imaging dose were evaluated and compared to kV-imaging. Hardware-based kVMV synchronization resulted in artifact-free projections. A combined 180 degrees kVMV-CBCT scan with a total MV-dose of 5 monitor units was acquired in 15 s and with sufficient image quality. The resolution was 5-6 line pairs cm(-1) (Catphan phantom). The combined kVMV-scan dose was equivalent to a kV-radiation scan dose of approximately 33 mGy. kVMV-CBCT based on a standard linac is promising and can provide ultra-fast online volume image guidance with low imaging dose and sufficient image quality for fast and accurate patient positioning for patients with lung cancer under breathhold.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Respiração , Tomografia Computadorizada de Feixe Cônico/instrumentação , Humanos , Neoplasias Pulmonares/fisiopatologia , Imagens de Fantasmas , Doses de Radiação , Rotação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA