Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Chembiochem ; 22(7): 1215-1222, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33180981

RESUMO

Synthetic vaccines, based on antigenic peptides that comprise MHC-I and MHC-II T-cell epitopes expressed by tumors, show great promise for the immunotherapy of cancer. For optimal immunogenicity, the synthetic peptides (SPs) should be adjuvanted with suitable immunostimulatory additives. Previously, we have shown that improved immunogenicity in vivo is obtained with vaccine modalities in which an SP is covalently connected to an adjuvanting moiety, typically a ligand to Toll-like receptor 2 (TLR2). SPs were covalently attached to UPam, which is a derivative of the classic TLR2 ligand Pam3 CysSK4 . A disadvantage of the triply palmitoylated UPam is its high lipophilicity, which precludes universal adoption of this adjuvant for covalent modification of various antigenic peptides as it renders the synthetic vaccine insoluble in several cases. Here, we report a novel conjugatable TLR2 ligand, mini-UPam, which contains only one palmitoyl chain, rather than three, and therefore has less impact on the solubility and other physicochemical properties of a synthetic peptide. In this study, we used SPs that contain the clinically relevant neoepitopes identified in a melanoma patient who completely recovered after T-cell therapy. Homogeneous mini-UPam-SP conjugates have been prepared in good yields by stepwise solid-phase synthesis that employed a mini-UPam building block pre-prepared in solution and the standard set of Fmoc-amino acids. The immunogenicity of the novel mini-UPam-SP conjugates was demonstrated by using the cancer patient's T-cells.


Assuntos
Antígenos de Neoplasias/química , Vacinas Anticâncer/imunologia , Ligantes , Receptor 2 Toll-Like/química , Vacinas Sintéticas/imunologia , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/química , Linhagem Celular , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Desenho de Fármacos , Humanos , Interleucina-8/metabolismo , Lipopeptídeos/síntese química , Lipopeptídeos/química , Lipopeptídeos/imunologia , Lipoilação , Ativação Linfocitária , Receptor 2 Toll-Like/metabolismo , Vacinas Sintéticas/química
2.
Pharm Res ; 35(11): 207, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209623

RESUMO

PURPOSE: Personalized peptide-based cancer vaccines will be composed of multiple patient specific synthetic long peptides (SLPs) which may have various physicochemical properties. To formulate such SLPs, a flexible vaccine delivery system is required. We studied whether cationic liposomes are suitable for this purpose. METHODS: Fifteen SIINFEKL T cell epitope-containing SLPs, widely differing in hydrophobicity and isoelectric point, were separately loaded in cationic liposomes via the dehydration-rehydration method. Particle size and polydispersity index (PDI) were measured via dynamic light scattering (DLS), and zeta potential with laser Doppler electrophoresis. Peptide loading was fluorescently determined and the immunogenicity of the formulated peptides was assessed in co-cultures of dendritic cells (DCs) and CD8+ T-cells in vitro. RESULTS: All SLPs were loaded in cationic liposomes by using three different loading method variants, depending on the SLP characteristics. The fifteen liposomal formulations had a comparable size (< 200 nm), PDI (< 0.3) and zeta potential (22-30 mV). Cationic liposomes efficiently delivered the SLPs to DCs that subsequently activated SIINFEKL-specific CD8+ T-cells, indicating improved immunological activity of the SLPs. CONCLUSION: Cationic liposomes can accommodate a wide range of different SLPs and are therefore a potential delivery platform for personalized cancer vaccines.


Assuntos
Vacinas Anticâncer/administração & dosagem , Portadores de Fármacos/química , Epitopos de Linfócito T , Lipossomos/química , Oligopeptídeos/administração & dosagem , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/química , Vacinas Anticâncer/imunologia , Cátions , Composição de Medicamentos , Liberação Controlada de Fármacos , Corantes Fluorescentes/química , Humanos , Ativação Linfocitária , Oligopeptídeos/química , Oligopeptídeos/imunologia , Ovalbumina/química , Tamanho da Partícula , Fragmentos de Peptídeos/química , Biblioteca de Peptídeos , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/imunologia
3.
Pharmaceutics ; 15(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36839652

RESUMO

BACKGROUND: Photodynamic therapy (PDT) is an established, minimally invasive treatment for specific types of cancer. During PDT, reactive oxygen species (ROS) are generated that ultimately induce cell death and disruption of the tumor area. Moreover, PDT can result in damage to the tumor vasculature and induce the release and/or exposure of damage-associated molecular patterns (DAMPs) that may initiate an antitumor immune response. However, there are currently several challenges of PDT that limit its widespread application for certain indications in the clinic. METHODS: A literature study was conducted to comprehensively discuss these challenges and to identify opportunities for improvement. RESULTS: The most notable challenges of PDT and opportunities to improve them have been identified and discussed. CONCLUSIONS: The recent efforts to improve the current challenges of PDT are promising, most notably those that focus on enhancing immune responses initiated by the treatment. The application of these improvements has the potential to enhance the antitumor efficacy of PDT, thereby broadening its potential application in the clinic.

4.
J Pharm Sci ; 111(4): 1040-1049, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35101553

RESUMO

Antigenic peptide-loaded cationic liposomes have shown promise as cancer vaccines. Quantification of both peptides and lipids is critical for quality control of such vaccines for clinical translation. In this work we describe a reversed phase ultra-performance liquid chromatography (RP-UPLC) method that separates lipids (DOTAP, DOPC and their degradation products) and two physicochemically different peptides within 12 min. Samples were prepared by dilution in a 1:1 (v/v) mixture of methanol and water. Peptide quantification was done via UV detection and lipids were quantified by an evaporative light scattering detector (ELSD), both coupled to the RP-UPLC system, with high precision (RSD < 3.5%). We showed that the presence of lipids and peptides did not mutually influence their quantification. Limit of detection (LOD) and limit of quantification (LOQ), as determined in the ICH guidelines, were 6 and 20 ng for DOTAP, 12 ng and 40 ng for DOPC, 3.0 ng and 8.0 ng for peptide A and 2.4 ng and 7.2 ng for the more hydrophobic peptide B. Finally, lipid degradation of DOTAP and DOPC was monitored in peptide loaded DOTAP:DOPC liposomes upon storage at 4 °C and 40 °C.


Assuntos
Cromatografia de Fase Reversa , Lipossomos , Cátions , Cromatografia Líquida de Alta Pressão/métodos , Luz , Lipólise , Lipossomos/química , Peptídeos , Espalhamento de Radiação
5.
Pharmaceutics ; 13(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919378

RESUMO

Cationic nanoparticles have been shown to be surprisingly effective as cancer vaccine vehicles in preclinical and clinical studies. Cationic nanoparticles deliver tumor-associated antigens to dendritic cells and induce immune activation, resulting in strong antigen-specific cellular immune responses, as shown for a wide variety of vaccine candidates. In this review, we discuss the relation between the cationic nature of nanoparticles and the efficacy of cancer immunotherapy. Multiple types of lipid- and polymer-based cationic nanoparticulate cancer vaccines with various antigen types (e.g., mRNA, DNA, peptides and proteins) and adjuvants are described. Furthermore, we focus on the types of cationic nanoparticles used for T-cell induction, especially in the context of therapeutic cancer vaccination. We discuss different cationic nanoparticulate vaccines, molecular mechanisms of adjuvanticity and biodistribution profiles upon administration via different routes. Finally, we discuss the perspectives of cationic nanoparticulate vaccines for improving immunotherapy of cancer.

6.
J Control Release ; 269: 347-354, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29174441

RESUMO

Recent studies have shown that intradermal vaccination has great potential for T cell-mediated cancer immunotherapy. However, classical intradermal immunization with a hypodermic needle and syringe has several drawbacks. Therefore, in the present study a digitally controlled hollow microneedle injection system (DC-hMN-iSystem) with an ultra-low dead volume was developed to perform micro-injections (0.25-10µL) into skin in an automated manner. A synthetic long peptide derived from human papilloma virus formulated in cationic liposomes, which was used as a therapeutic cancer vaccine, was administered intradermally by using the DC-hMN-iSystem. Fused silica hollow microneedles with an inner diameter of 50µm and a bevel length of 66±26µm were successfully fabricated via hydrofluoric acid etching. Upon piercing these microneedles into the skin using a protrusion length of 400µm, microneedles were inserted at a depth of 350±55µm. Micro-injections of 1-10µL had an accuracy between 97 and 113% with a relative standard deviation (RSD) of 9%, and lower volumes (0.25 and 0.5µL) had an accuracy of 86-103% with a RSD of 29% in ex vivo human skin. Intradermal administration of the therapeutic cancer vaccine via micro-injections induced strong functional cytotoxic and T-helper responses in mice, while requiring much lower volumes as compared to classical intradermal immunization. In conclusion, by using the newly developed DC-hMN-iSystem, very low vaccine volumes can be precisely injected into skin in an automated manner. Thereby, this system shows potential for minimally-invasive and potentially pain-free therapeutic cancer vaccination.


Assuntos
Vacinas Anticâncer/administração & dosagem , Microinjeções , Agulhas , Proteínas E7 de Papillomavirus/administração & dosagem , Vacinas de Subunidades Antigênicas/administração & dosagem , Animais , Feminino , Humanos , Injeções Intradérmicas , Lipossomos , Camundongos Endogâmicos C57BL , Linfócitos T Citotóxicos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA