Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 628(8009): 826-834, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538787

RESUMO

Empirical evidence suggests that heat exposure reduces food intake. However, the neurocircuit architecture and the signalling mechanisms that form an associative interface between sensory and metabolic modalities remain unknown, despite primary thermoceptive neurons in the pontine parabrachial nucleus becoming well characterized1. Tanycytes are a specialized cell type along the wall of the third ventricle2 that bidirectionally transport hormones and signalling molecules between the brain's parenchyma and ventricular system3-8. Here we show that tanycytes are activated upon acute thermal challenge and are necessary to reduce food intake afterwards. Virus-mediated gene manipulation and circuit mapping showed that thermosensing glutamatergic neurons of the parabrachial nucleus innervate tanycytes either directly or through second-order hypothalamic neurons. Heat-dependent Fos expression in tanycytes suggested their ability to produce signalling molecules, including vascular endothelial growth factor A (VEGFA). Instead of discharging VEGFA into the cerebrospinal fluid for a systemic effect, VEGFA was released along the parenchymal processes of tanycytes in the arcuate nucleus. VEGFA then increased the spike threshold of Flt1-expressing dopamine and agouti-related peptide (Agrp)-containing neurons, thus priming net anorexigenic output. Indeed, both acute heat and the chemogenetic activation of glutamatergic parabrachial neurons at thermoneutrality reduced food intake for hours, in a manner that is sensitive to both Vegfa loss-of-function and blockage of vesicle-associated membrane protein 2 (VAMP2)-dependent exocytosis from tanycytes. Overall, we define a multimodal neurocircuit in which tanycytes link parabrachial sensory relay to the long-term enforcement of a metabolic code.


Assuntos
Tronco Encefálico , Células Ependimogliais , Comportamento Alimentar , Temperatura Alta , Hipotálamo , Vias Neurais , Neurônios , Animais , Feminino , Masculino , Camundongos , Proteína Relacionada com Agouti/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/citologia , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Dopamina/metabolismo , Ingestão de Alimentos/fisiologia , Células Ependimogliais/citologia , Células Ependimogliais/fisiologia , Comportamento Alimentar/fisiologia , Ácido Glutâmico/metabolismo , Hipotálamo/citologia , Hipotálamo/fisiologia , Vias Neurais/metabolismo , Neurônios/metabolismo , Núcleos Parabraquiais/citologia , Núcleos Parabraquiais/metabolismo , Núcleos Parabraquiais/fisiologia , Sensação Térmica/fisiologia , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/líquido cefalorraquidiano , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(16): e2309211121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593081

RESUMO

Vesicular release of neurotransmitters and hormones relies on the dynamic assembly of the exocytosis/trans-SNARE complex through sequential interactions of synaptobrevins, syntaxins, and SNAP-25. Despite SNARE-mediated release being fundamental for intercellular communication in all excitable tissues, the role of auxiliary proteins modulating the import of reserve vesicles to the active zone, and thus, scaling repetitive exocytosis remains less explored. Secretagogin is a Ca2+-sensor protein with SNAP-25 being its only known interacting partner. SNAP-25 anchors readily releasable vesicles within the active zone, thus being instrumental for 1st phase release. However, genetic deletion of secretagogin impedes 2nd phase release instead, calling for the existence of alternative protein-protein interactions. Here, we screened the secretagogin interactome in the brain and pancreas, and found syntaxin-4 grossly overrepresented. Ca2+-loaded secretagogin interacted with syntaxin-4 at nanomolar affinity and 1:1 stoichiometry. Crystal structures of the protein complexes revealed a hydrophobic groove in secretagogin for the binding of syntaxin-4. This groove was also used to bind SNAP-25. In mixtures of equimolar recombinant proteins, SNAP-25 was sequestered by secretagogin in competition with syntaxin-4. Kd differences suggested that secretagogin could shape unidirectional vesicle movement by sequential interactions, a hypothesis supported by in vitro biological data. This mechanism could facilitate the movement of transport vesicles toward release sites, particularly in the endocrine pancreas where secretagogin, SNAP-25, and syntaxin-4 coexist in both α- and ß-cells. Thus, secretagogin could modulate the pace and fidelity of vesicular hormone release by differential protein interactions.


Assuntos
Fusão de Membrana , Secretagoginas , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Secretagoginas/metabolismo , Membrana Celular/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Exocitose , Comunicação Celular , Sintaxina 1/metabolismo , Ligação Proteica
3.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139342

RESUMO

Polyomaviruses are widespread, with BK viruses being most common in humans who require immunosuppression due to allotransplantation. Infection with BK polyomavirus (BKV) may manifest as BK virus-associated nephropathy and hemorrhagic cystitis. Established diagnostic methods include the detection of polyomavirus in urine and blood by PCR and in tissue biopsies via immunohistochemistry. In this study, 79 patients with pathological renal retention parameters and acute kidney injury (AKI) were screened for BK polyomavirus replication by RNA extraction, reverse transcription, and virus-specific qPCR in urine sediment cells. A short fragment of the VP2 coding region was the target of qPCR amplification; patients with (n = 31) and without (n = 48) a history of renal transplantation were included. Urine sediment cell immunofluorescence staining for VP1 BK polyomavirus protein was performed using confocal microscopy. In 22 patients with acute renal injury, urinary sediment cells from 11 participants with kidney transplantation (KTX) and from 11 non-kidney transplanted patients (nonKTX) were positive for BK virus replication. BK virus copies were found more frequently in patients with AKI stage III (n = 14). Higher copy numbers were detected in KTX patients having experienced BK polyoma-nephropathy (BKPyVAN) in the past or diagnosed recently by histology (5.6 × 109-3.1 × 1010). One patient developed BK viremia following delayed graft function (DGF) with BK virus-positive urine sediment. In nonKTX patients with BK copies, decoy cells were absent; however, positive staining of cells was found with epithelial morphology. Decoy cells were only found in KTX patients with BKPyVAN. In AKI, damage to the tubular epithelium itself may render the epithelial cells more permissive for polyoma replication. This non-invasive diagnostic approach to assess BK polyomavirus replication in urine sediment cells has the potential to identify KTX patients at risk for viremia and BKPyVAN during AKI. This method might serve as a valuable screening tool for close monitoring and tailored immunosuppression decisions.


Assuntos
Injúria Renal Aguda , Vírus BK , Transplante de Rim , Infecções por Polyomavirus , Polyomavirus , Humanos , Vírus BK/genética , Viremia/diagnóstico , Viremia/etiologia , Transplante de Rim/efeitos adversos , Transplante de Rim/métodos , Rim/patologia , Injúria Renal Aguda/etiologia
4.
Nat Commun ; 15(1): 2762, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553447

RESUMO

The significance of transient neuropeptide expression during postnatal brain development is unknown. Here, we show that galanin expression in the ventrobasal thalamus of infant mice coincides with whisker map development and modulates subcortical circuit wiring. Time-resolved neuroanatomy and single-nucleus RNA-seq identified complementary galanin (Gal) and galanin receptor 1 (Galr1) expression in the ventrobasal thalamus and the principal sensory nucleus of the trigeminal nerve (Pr5), respectively. Somatodendritic galanin release from the ventrobasal thalamus was time-locked to the first postnatal week, when Gal1R+ Pr5 afferents form glutamatergic (Slc17a6+) synapses for the topographical whisker map to emerge. RNAi-mediated silencing of galanin expression disrupted glutamatergic synaptogenesis, which manifested as impaired whisker-dependent exploratory behaviors in infant mice, with behavioral abnormalities enduring into adulthood. Pharmacological probing of receptor selectivity in vivo corroborated that target recognition and synaptogenesis in the thalamus, at least in part, are reliant on agonist-induced Gal1R activation in inbound excitatory axons. Overall, we suggest a neuropeptide-dependent developmental mechanism to contribute to the topographical specification of a fundamental sensory neurocircuit in mice.


Assuntos
Galanina , Vibrissas , Animais , Humanos , Camundongos , Axônios/metabolismo , Encéfalo/metabolismo , Galanina/metabolismo , Tálamo/metabolismo , Vibrissas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA