RESUMO
With ongoing global warming, increasing water deficits promote physiological stress on forest ecosystems with negative impacts on tree growth, vitality, and survival. How individual tree species will react to increased drought stress is therefore a key research question to address for carbon accounting and the development of climate change mitigation strategies. Recent tree-ring studies have shown that trees at higher latitudes will benefit from warmer temperatures, yet this is likely highly species-dependent and less well-known for more temperate tree species. Using a unique pan-European tree-ring network of 26,430 European beech (Fagus sylvatica L.) trees from 2118 sites, we applied a linear mixed-effects modeling framework to (i) explain variation in climate-dependent growth and (ii) project growth for the near future (2021-2050) across the entire distribution of beech. We modeled the spatial pattern of radial growth responses to annually varying climate as a function of mean climate conditions (mean annual temperature, mean annual climatic water balance, and continentality). Over the calibration period (1952-2011), the model yielded high regional explanatory power (R2 = 0.38-0.72). Considering a moderate climate change scenario (CMIP6 SSP2-4.5), beech growth is projected to decrease in the future across most of its distribution range. In particular, projected growth decreases by 12%-18% (interquartile range) in northwestern Central Europe and by 11%-21% in the Mediterranean region. In contrast, climate-driven growth increases are limited to around 13% of the current occurrence, where the historical mean annual temperature was below ~6°C. More specifically, the model predicts a 3%-24% growth increase in the high-elevation clusters of the Alps and Carpathian Arc. Notably, we find little potential for future growth increases (-10 to +2%) at the poleward leading edge in southern Scandinavia. Because in this region beech growth is found to be primarily water-limited, a northward shift in its distributional range will be constrained by water availability.
Assuntos
Mudança Climática , Fagus , Fagus/crescimento & desenvolvimento , Fagus/fisiologia , Europa (Continente) , Secas , Água/metabolismo , Temperatura , FlorestasRESUMO
Tree-ring data has been widely used to inform about tree growth responses to drought at the individual scale, but less is known about how tree growth sensitivity to drought scales up driving changes in forest dynamics. Here, we related tree-ring growth chronologies and stand-level forest changes in basal area from two independent data sets to test if tree-ring responses to drought match stand forest dynamics (stand basal area growth, ingrowth, and mortality). We assessed if tree growth and changes in forest basal area covary as a function of spatial scale and tree taxa (gymnosperm or angiosperm). To this end, we compared a tree-ring network with stand data from the Spanish National Forest Inventory. We focused on the cumulative impact of drought on tree growth and demography in the period 1981-2005. Drought years were identified by the Standardized Precipitation Evapotranspiration Index, and their impacts on tree growth by quantifying tree-ring width reductions. We hypothesized that forests with greater drought impacts on tree growth will also show reduced stand basal area growth and ingrowth and enhanced mortality. This is expected to occur in forests dominated by gymnosperms on drought-prone regions. Cumulative growth reductions during dry years were higher in forests dominated by gymnosperms and presented a greater magnitude and spatial autocorrelation than for angiosperms. Cumulative drought-induced tree growth reductions and changes in forest basal area were related, but initial stand density and basal area were the main factors driving changes in basal area. In drought-prone gymnosperm forests, we observed that sites with greater growth reductions had lower stand basal area growth and greater mortality. Consequently, stand basal area, forest growth, and ingrowth in regions with large drought impacts was significantly lower than in regions less impacted by drought. Tree growth sensitivity to drought can be used as a predictor of gymnosperm demographic rates in terms of stand basal area growth and ingrowth at regional scales, but further studies may try to disentangle how initial stand density modulates such relationships. Drought-induced growth reductions and their cumulative impacts have strong potential to be used as early-warning indicators of regional forest vulnerability.
Assuntos
Magnoliopsida , Árvores , Mudança Climática , Secas , FlorestasRESUMO
Global climate change is expected to further raise the frequency and severity of extreme events, such as droughts. The effects of extreme droughts on trees are difficult to disentangle given the inherent complexity of drought events (frequency, severity, duration, and timing during the growing season). Besides, drought effects might be modulated by trees' phenotypic variability, which is, in turn, affected by long-term local selective pressures and management legacies. Here we investigated the magnitude and the temporal changes of tree-level resilience (i.e., resistance, recovery, and resilience) to extreme droughts. Moreover, we assessed the tree-, site-, and drought-related factors and their interactions driving the tree-level resilience to extreme droughts. We used a tree-ring network of the widely distributed Scots pine (Pinus sylvestris) along a 2,800 km latitudinal gradient from southern Spain to northern Germany. We found that the resilience to extreme drought decreased in mid-elevation and low productivity sites from 1980-1999 to 2000-2011 likely due to more frequent and severe droughts in the later period. Our study showed that the impact of drought on tree-level resilience was not dependent on its latitudinal location, but rather on the type of sites trees were growing at and on their growth performances (i.e., magnitude and variability of growth) during the predrought period. We found significant interactive effects between drought duration and tree growth prior to drought, suggesting that Scots pine trees with higher magnitude and variability of growth in the long term are more vulnerable to long and severe droughts. Moreover, our results indicate that Scots pine trees that experienced more frequent droughts over the long-term were less resistant to extreme droughts. We, therefore, conclude that the physiological resilience to extreme droughts might be constrained by their growth prior to drought, and that more frequent and longer drought periods may overstrain their potential for acclimation.
Assuntos
Secas , Pinus sylvestris , Europa (Continente) , Alemanha , Espanha , ÁrvoresRESUMO
Warmer and drier climatic conditions are projected for the 21st century; however, the role played by extreme climatic events on forest vulnerability is still little understood. For example, more severe droughts and heat waves could threaten quaternary relict tree refugia such as Circum-Mediterranean fir forests (CMFF). Using tree-ring data and a process-based model, we characterized the major climate constraints of recent (1950-2010) CMFF growth to project their vulnerability to 21st-century climate. Simulations predict a 30% growth reduction in some fir species with the 2050s business-as-usual emission scenario, whereas growth would increase in moist refugia due to a longer and warmer growing season. Fir populations currently subjected to warm and dry conditions will be the most vulnerable in the late 21st century when climatic conditions will be analogous to the most severe dry/heat spells causing dieback in the late 20th century. Quantification of growth trends based on climate scenarios could allow defining vulnerability thresholds in tree populations. The presented predictions call for conservation strategies to safeguard relict tree populations and anticipate how many refugia could be threatened by 21st-century dry spells.
Assuntos
Abies/fisiologia , Modelos Estatísticos , Dispersão Vegetal/fisiologia , Mudança Climática/estatística & dados numéricos , Simulação por Computador , Secas/estatística & dados numéricos , Previsões , Florestas , Região do Mediterrâneo , Refúgio de Vida Selvagem , Estações do Ano , ÁrvoresRESUMO
Forecasted increase drought frequency and severity may drive worldwide declines in forest productivity. Species-level responses to a drier world are likely to be influenced by their functional traits. Here, we analyse forest resilience to drought using an extensive network of tree-ring width data and satellite imagery. We compiled proxies of forest growth and productivity (TRWi, absolutely dated ring-width indices; NDVI, Normalized Difference Vegetation Index) for 11 tree species and 502 forests in Spain corresponding to Mediterranean, temperate, and continental biomes. Four different components of forest resilience to drought were calculated based on TRWi and NDVI data before, during, and after four major droughts (1986, 1994-1995, 1999, and 2005), and pointed out that TRWi data were more sensitive metrics of forest resilience to drought than NDVI data. Resilience was related to both drought severity and forest composition. Evergreen gymnosperms dominating semi-arid Mediterranean forests showed the lowest resistance to drought, but higher recovery than deciduous angiosperms dominating humid temperate forests. Moreover, semi-arid gymnosperm forests presented a negative temporal trend in the resistance to drought, but this pattern was absent in continental and temperate forests. Although gymnosperms in dry Mediterranean forests showed a faster recovery after drought, their recovery potential could be constrained if droughts become more frequent. Conversely, angiosperms and gymnosperms inhabiting temperate and continental sites might have problems to recover after more intense droughts since they resist drought but are less able to recover afterwards.
Assuntos
Cycadopsida/fisiologia , Secas , Florestas , Magnoliopsida/fisiologia , Região do Mediterrâneo , Espanha , Fatores de TempoRESUMO
Management of fuel to minimize crown fire hazard is a key challenge in Atlantic forests, particularly for pine species. However, a better understanding of effectiveness of silvicultural treatments, especially forest pruning, for hazard reduction is required. Here we evaluate pruning and thinning as two essential silvicultural treatments for timber pine forests. Data came from a network of permanent plots of young maritime pine stands in northwestern Spain. Vertical profiles of canopy bulk density were estimated for field data and simulated scenarios of pruning and thinning using individual tree biomass equations. Analyses of variance were conducted to establish the influence of each silvicultural treatment on canopy fuel variables. Results confirm the important role of both pruning and thinning in the mitigation of crown fire hazard, and that the effectiveness of the treatments is related to their intensity. Finally, models to directly estimate the vertical profile of canopy bulk density (CBD) were fitted using the Weibull probability density function and usual stand variables as regressors. The models developed include variables sensitive to pruning and thinning interventions and provide useful information to prevent extreme fire behavior through effective silviculture.
Assuntos
Incêndios , Florestas , Biomassa , Agricultura Florestal , Pinus , EspanhaRESUMO
The analysis of climate variability and development of reconstructions based on tree-ring records in tropical forests have been increasing in recent decades. In the Amazon region, ring width and stable isotope long-term chronologies have been used for climatic studies, however little is known about the potential of wood traits such as density and chemical concentrations. In this study, we used well-dated rings of Cedrela fissilis Vell. from the drought-prone southern Amazon basin to assess the potential of using inter-annual variations of annually-resolved ring width, wood density, stable oxygen isotope (δ18OTR) measured in tree-ring cellulose and concentration of Sulfur (STR) and Calcium (CaTR) in xylem cells to study climate variability. During wet years, Cedrela fissilis produced wider and denser rings with higher CaTR and lower STR, as well as depleted δ18OTR values. During dry years, a wider range of responses was observed in growth, density and STR, while lower CaTR and enriched δ18OTR values were found. The annual centennial chronologies spanning from 1835 to 2018 showed good calibration skills for reconstructing local precipitation, evapotranspiration (P-PET), Amazon-wide rainfall, as well as climate modes related to sea surface temperature (SST) anomalies such as El Niño South Oscillation (ENSO), Tropical Northern Atlantic (TNA), and the Western Hemisphere Warm Pool (WHWP) oscillations. CaTR explained 42 % of the variance of local precipitation (1975-2018), RW explained 30 % of the P-PET variance (1975-2018), while δ18OTR explained 60 % and 57 % of the variance of Amazon rainfall (1960-2018) and El Niño 3.4 (1920-2018), respectively. Our results show that a multi-proxy tropical tree-ring approach can be used for high-reliable reconstructions of climate variability over Amazon basin at inter-annual and multidecadal time scales.
Assuntos
Cedrela , Árvores , Florestas , Estações do Ano , El Niño Oscilação SulRESUMO
The mechanistic pathways connecting ocean-atmosphere variability and terrestrial productivity are well-established theoretically, but remain challenging to quantify empirically. Such quantification will greatly improve the assessment and prediction of changes in terrestrial carbon sequestration in response to dynamically induced climatic extremes. The jet stream latitude (JSL) over the North Atlantic-European domain provides a synthetic and robust physical framework that integrates climate variability not accounted for by atmospheric circulation patterns alone. Surface climate impacts of north-south summer JSL displacements are not uniform across Europe, but rather create a northwestern-southeastern dipole in forest productivity and radial-growth anomalies. Summer JSL variability over the eastern North Atlantic-European domain (5-40E) exerts the strongest impact on European beech, inducing anomalies of up to 30% in modelled gross primary productivity and 50% in radial tree growth. The net effects of JSL movements on terrestrial carbon fluxes depend on forest density, carbon stocks, and productivity imbalances across biogeographic regions.
Assuntos
Fagus , Movimentos do Ar , Carbono , Mudança Climática , FlorestasRESUMO
Drought-induced forest dieback is causing reductions in productivity, increasing tree mortality and impairing terrestrial carbon uptake worldwide. However, the role played by long-term nutrient imbalances during drought-induced dieback is still unknown. To improve our knowledge on the relationships between dieback and nutrient imbalances, we analysed wood anatomical traits (tree-ring width and wood density), soil properties and long-term chemical information in tree-ring wood (1900-2010) by non-destructive Micro X-ray fluorescence (µXRF) and destructive (ICP-OES) techniques. We studied two major European conifers with ongoing drought-induced dieback in mesic (Abies alba, silver fir) and xeric (Pinus sylvestris, Scots pine) sites. In each site we compared coexisting declining (D) and non-declining (ND) trees. We used dendrochronology and generalized additive and linear mixed models to analyse trends in tree-ring nutrients and their relationships with wood traits. The D trees presented lower growth and higher minimum wood density than ND trees, corresponding to a smaller lumen area of earlywood tracheids and thus a lower theoretical hydraulic conductivity. These differences in growth and wood-anatomy were more marked in silver fir than in Scots pine. Moreover, most of the chemical elements showed higher concentrations in D than in ND trees during the last two-five decades (e.g., Mn, K and Mg), while Ca and Na increased in the sapwood of ND trees. The Mn concentrations, and related ratios (Ca:Mn, Mn:Al and P:Mn) showed the highest differences between D and ND trees for both tree species. These findings suggest that a reduced hydraulic conductivity, consistent with hydraulic impairment, is affecting the use of P in D trees, making them more prone to drought-induced damage. The retrospective quantifications of Mn ratios may be used as early-warning signals of impending dieback.
Assuntos
Secas , Monitoramento Ambiental , Florestas , Abies , Clima , Nitrogênio , Fósforo , Pinus sylvestris , ÁrvoresRESUMO
Drought stress causes a reduction in tree growth and forest productivity, which could be aggravated by climate warming and defoliation due to moth outbreaks. We investigate how European gypsy moth (Lymantria dispar dispar L., Lepidoptera: Erebidae) outbreak and related climate conditions affected growth and wood features in host and non-host tree species in north-western Spain. There, radiata pine (Pinus radiata D. Don) plantations and chestnut (Castanea sativa Mill.) stands were defoliated by the moth larvae, whereas Maritime pine (Pinus pinaster Ait.) was not defoliated. The gypsy moth outbreak peaked in 2012 and 2013, and it was preceded by very warm spring conditions in 2011 and a dry-warm 2011-2012 winter. Using dendrochronology we compared growth responses to climate and defoliation of host species (radiata pine, chestnut) with the non-host species (Maritime pine). We also analyzed wood density derived from X-ray densitometry in defoliated and non-defoliated trees of radiata pine. We aimed to: (i) disentangle the relative effects of defoliation and climate stress on radial growth, and (ii) characterize defoliated trees of radiata pine according to their wood features (ring-width, maximum and minimum density). Radial growth during the outbreak (2012-2013) decreased on average 74% in defoliated (>50% of leaf area removed) trees of radiata pine, 43% in defoliated trees of chestnut, and 4% in non-defoliated trees of Maritime pine. After applying a BACI (Before-After-Control-Impact) type analysis, we concluded that the difference in the pattern of radial growth before and during the defoliation event was more likely due to the differences in climate between these two periods. Radiata pines produced abundant latewood intra-annual density fluctuations in 2006 and 2009 in response to wet summer conditions, suggesting a high climatic responsiveness. Minimum wood density was lower in defoliated than in non-defoliated trees of radiata pine prior to the outbreak, but increased during the outbreak. The pre-outbreak difference in minimum wood density suggests that the trees most affected by the outbreak produced tracheids with wider lumen and were more susceptible to drought stress. Results of this study illustrate (i) that the pattern of radial growth alone may be not a good indicator for reconstructing past defoliation events and (ii) that wood variables are reliable indicators for assessing the susceptibility of radiata pine to defoliation by the gypsy moth.
RESUMO
Dendrochemical studies in old forests are still underdeveloped. Old trees growing in remote high-elevation areas far from direct human influence constitute a promising biological proxy for the long-term reconstructions of environmental changes using tree-rings. Furthermore, centennial-long chronologies of multi-elemental chemistry at inter- and intra-annual resolution are scarce. Here, we use a novel non-destructive method by applying Micro X-ray fluorescence (µXRF) to wood samples of old Pinus uncinata trees from two Pyrenean high-elevation forests growing on acidic and basic soils. To disentangle ontogenetic (changes in tree age and diameter) from environmental influences (e.g., climate warming) we compared element patterns in sapwood (SW) and heartwood (HW) during the pre-industrial (1700-1849) and industrial (1850-2008) periods. We quantified tree-ring growth, wood density and relative element concentrations at annual (TRW, tree-ring) to seasonal resolution (EW, earlywood; LW, latewood) and related them to climate variables (temperature and precipitation) and volcanic eruptions in the 18th and 19th centuries. We detected differences for most studied elements between SW and HW along the stem and also between EW and LW within rings. Long-term positive and negative trends were observed for Ca and K, respectively. Cl, P and S showed positive trends during the industrial period. However, differences between sites were also notable. Higher values of Mg, Al, Si and the Ca/Mn ratio were observed at the site with acidic soil. Growing-season temperatures were positively related to growth, maximum wood density and to the concentration of most elements. Peaks in S, Fe, Cl, Zn and Ca were linked to major volcanic eruptions (e.g., Tambora in 1815). Our results reveal the potential of long-term wood-chemistry studies based on the µXRF non-destructive technique to reconstruct environmental changes.
Assuntos
Clima , Florestas , Pinus/crescimento & desenvolvimento , Madeira/química , Espanha , Árvores/crescimento & desenvolvimentoRESUMO
The fuel complex variables canopy bulk density and canopy base height are often used to predict crown fire initiation and spread. Direct measurement of these variables is impractical, and they are usually estimated indirectly by modelling. Recent advances in predicting crown fire behaviour require accurate estimates of the complete vertical distribution of canopy fuels. The objectives of the present study were to model the vertical profile of available canopy fuel in pine stands by using data from the Spanish national forest inventory plus low-density airborne laser scanning (ALS) metrics. In a first step, the vertical distribution of the canopy fuel load was modelled using the Weibull probability density function. In a second step, two different systems of models were fitted to estimate the canopy variables defining the vertical distributions; the first system related these variables to stand variables obtained in a field inventory, and the second system related the canopy variables to airborne laser scanning metrics. The models of each system were fitted simultaneously to compensate the effects of the inherent cross-model correlation between the canopy variables. Heteroscedasticity was also analyzed, but no correction in the fitting process was necessary. The estimated canopy fuel load profiles from field variables explained 84% and 86% of the variation in canopy fuel load for maritime pine and radiata pine respectively; whereas the estimated canopy fuel load profiles from ALS metrics explained 52% and 49% of the variation for the same species. The proposed models can be used to assess the effectiveness of different forest management alternatives for reducing crown fire hazard.
Assuntos
Agricultura Florestal/métodos , Florestas , Modelos Teóricos , Biomassa , Conservação dos Recursos Naturais , Incêndios , Lasers , Pinus/crescimento & desenvolvimentoRESUMO
Element composition of annually resolved tree-rings constitutes a promising biological proxy for reconstructions of environmental conditions and pollution history. However, several methodological and physiological issues have to be addressed before sound conclusions can be drawn from dendrochemical time series. For example, radial and vertical translocation processes of elements in the wood might blur or obscure any dendrochemical signal. In this study, we tested the degree of synchronism of elemental time series within and between trees of one coniferous (Pinus sylvestris L.) and one broadleaf (Castanea sativa Mill.) species growing in conventionally managed forests without direct pollution sources in their surroundings. Micro X-ray fluorescence (µXRF) analysis was used to establish time series of relative concentrations of multiple elements (Mg, Al, P, Cl, K, Ca, Cr, Mn, Fe and Ni) for different stem heights and stem exposures. We found a common long-term (decadal) trend for most elements in both species, but only little coherence in the high frequency domain (inter-annual variations). Aligning the element curves by cambial age instead of year of ring formation reduced the standard deviations between the single measurements. This points at an influence of age on longer term trends and would require a detrending in order to extract any environmental signal from dendrochemical time series. The common signal was stronger for pine than for chestnut. In pine, many elements show a concentration gradient with higher values towards the tree crown. Mobility of elements in the stem leading to high within- and between-tree variability, as well as a potential age-trend apparently complicate the establishment of reliable dendrochemical chronologies. For future wood-chemical studies, we recommend to work with element ratios instead of single element time series, to consider potential age trends and to analyze more than one sample per tree to account for internal variability.