Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 61(42): 16699-16706, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36217744

RESUMO

We integrate a deep machine learning (ML) method with first-principles calculations to efficiently search for the energetically favorable ternary compounds. Using La-Si-P as a prototype system, we demonstrate that ML-guided first-principles calculations can efficiently explore crystal structures and their relative energetic stabilities, thus greatly accelerate the pace of material discovery. A number of new La-Si-P ternary compounds with formation energies less than 30 meV/atom above the known ternary convex hull are discovered. Among them, the formation energies of La5SiP3 and La2SiP phases are only 2 and 10 meV/atom, respectively, above the convex hull. These two compounds are dynamically stable with no imaginary phonon modes. Moreover, by replacing Si with heavier-group 14 elements in the eight lowest-energy La-Si-P structures from our ML-guided predictions, a number of low-energy La-X-P phases (X = Ge, Sn, Pb) are predicted.

3.
Chem Sci ; 12(44): 14718-14730, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34820087

RESUMO

An innovative method of synthesis is reported for the large and diverse (RE)6(TM) x (Tt)2S14 (RE = rare-earth, TM = transition metals, Tt = Si, Ge, and Sn) family of compounds (∼1000 members, ∼325 contain Si), crystallizing in the noncentrosymmetric, chiral, and polar P63 space group. Traditional synthesis of such phases involves the annealing of elements or binary sulfides at elevated temperatures. The atomic mixing of refractory components technique, presented here, allows the synthesis of known members and vastly expands the family to nearly the entire transition metal block, including 3d, 4d, and 5d TMs with oxidation states ranging from 1+ to 4+. Arc-melting of the RE, TM, and tetrel elements of choice forms an atomically-mixed precursor, which readily reacts with sulfur providing bulk powders and large single crystals of the target quaternary sulfides. Detailed in situ and ex situ experiments show the mechanism of formation, which involves multiphase binary sulfide intermediates. Crystal structures and metal oxidation states were corroborated by a combination of single crystal X-ray diffraction, elemental analysis, EPR, NMR, and SQUID magnetometry. The potential of La6(TM) x (Tt)2S14 compounds for non-linear optical applications was also demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA