RESUMO
Vehicle emissions contribute to fine particulate matter (PM2.5) and tropospheric ozone air pollution, affecting human health, crop yields and climate worldwide. On-road diesel vehicles produce approximately 20 per cent of global anthropogenic emissions of nitrogen oxides (NOx), which are key PM2.5 and ozone precursors. Regulated NOx emission limits in leading markets have been progressively tightened, but current diesel vehicles emit far more NOx under real-world operating conditions than during laboratory certification testing. Here we show that across 11 markets, representing approximately 80 per cent of global diesel vehicle sales, nearly one-third of on-road heavy-duty diesel vehicle emissions and over half of on-road light-duty diesel vehicle emissions are in excess of certification limits. These excess emissions (totalling 4.6 million tons) are associated with about 38,000 PM2.5- and ozone-related premature deaths globally in 2015, including about 10 per cent of all ozone-related premature deaths in the 28 European Union member states. Heavy-duty vehicles are the dominant contributor to excess diesel NOx emissions and associated health impacts in almost all regions. Adopting and enforcing next-generation standards (more stringent than Euro 6/VI) could nearly eliminate real-world diesel-related NOx emissions in these markets, avoiding approximately 174,000 global PM2.5- and ozone-related premature deaths in 2040. Most of these benefits can be achieved by implementing Euro VI standards where they have not yet been adopted for heavy-duty vehicles.
Assuntos
União Europeia/economia , Gasolina/análise , Gasolina/economia , Óxido Nítrico/análise , Óxido Nítrico/intoxicação , Emissões de Veículos/prevenção & controle , Emissões de Veículos/intoxicação , Europa (Continente)/epidemiologia , União Europeia/estatística & dados numéricos , Gasolina/efeitos adversos , Humanos , Mortalidade Prematura , Ozônio/análise , Ozônio/economia , Ozônio/intoxicação , Material Particulado/análise , Material Particulado/economia , Material Particulado/intoxicação , Emissões de Veículos/análiseRESUMO
Over the last decades, energy and pollution control policies combined with structural changes in the economy decoupled emission trends from economic growth, increasingly also in the developing world. It is found that effective implementation of the presently decided national pollution control regulations should allow further economic growth without major deterioration of ambient air quality, but will not be enough to reduce pollution levels in many world regions. A combination of ambitious policies focusing on pollution controls, energy and climate, agricultural production systems and addressing human consumption habits could drastically improve air quality throughout the world. By 2040, mean population exposure to PM2.5 from anthropogenic sources could be reduced by about 75% relative to 2015 and brought well below the WHO guideline in large areas of the world. While the implementation of the proposed technical measures is likely to be technically feasible in the future, the transformative changes of current practices will require strong political will, supported by a full appreciation of the multiple benefits. Improved air quality would avoid a large share of the current 3-9 million cases of premature deaths annually. At the same time, the measures that deliver clean air would also significantly reduce emissions of greenhouse gases and contribute to multiple UN sustainable development goals. This article is part of a discussion meeting issue 'Air quality, past present and future'.
RESUMO
Black carbon (BC) in haze and deposited on snow and ice can have strong effects on the radiative balance of the Arctic. There is a geographic bias in Arctic BC studies toward the Atlantic sector, with lack of observational constraints for the extensive Russian Siberian Arctic, spanning nearly half of the circum-Arctic. Here, 2 y of observations at Tiksi (East Siberian Arctic) establish a strong seasonality in both BC concentrations (8 ngâ m-3 to 302 ngâ m-3) and dual-isotope-constrained sources (19 to 73% contribution from biomass burning). Comparisons between observations and a dispersion model, coupled to an anthropogenic emissions inventory and a fire emissions inventory, give mixed results. In the European Arctic, this model has proven to simulate BC concentrations and source contributions well. However, the model is less successful in reproducing BC concentrations and sources for the Russian Arctic. Using a Bayesian approach, we show that, in contrast to earlier studies, contributions from gas flaring (6%), power plants (9%), and open fires (12%) are relatively small, with the major sources instead being domestic (35%) and transport (38%). The observation-based evaluation of reported emissions identifies errors in spatial allocation of BC sources in the inventory and highlights the importance of improving emission distribution and source attribution, to develop reliable mitigation strategies for efficient reduction of BC impact on the Russian Arctic, one of the fastest-warming regions on Earth.
RESUMO
Global solid biofuel stove emissions strongly impact air quality, climate change, and human health. However, investigations of the impacts of global solid biofuel stove emissions on human health associated with PM2.5 (particulate matter with aerodynamic diameter ≤2.5 µm) and ozone (O3) are limited. Here, we quantify the impacts of global solid biofuel stove emissions on ambient PM2.5 and O3 air quality and the associated human health effects for the year 2010, using the Community Atmosphere Model coupled with Chemistry version 5.3. Annual mean surface PM2.5 concentrations from global solid biofuel stove emissions averaged over 2006-2010 are up to 23.1 µg m-3, with large impacts found over China, India, sub-Saharan Africa, and eastern and central Europe. For surface O3 impacts, we find that global solid biofuel stove emissions lead to increases in surface O3 concentrations by up to 5.7 ppbv for China, India, and sub-Saharan Africa, and negligible impacts or reductions of up to 0.5 ppbv for the US, Europe, and parts of South America. Global solid biofuel stove emissions for the year 2010 contribute to 382,000 [95% confidence interval (95CI): 349,000-409,000] annual premature deaths associated with PM2.5 and O3 exposure, with the corresponding years of life lost as 8.10 million years (95CI: 7.38-8.70 million years). Our study highlights air quality and human health benefits of mitigating emissions from the global solid biofuel stove sector, especially over populous regions of low-income and middle-income countries, through promoting clean household energy programs for the residential energy supply.
RESUMO
The global gasoline and diesel fuel vehicle fleets impose substantial impacts on air quality, human health, and climate change. Here we quantify the global radiative forcing and human health impacts of the global gasoline and diesel sectors using the NCAR CESM global chemistry-climate model for year 2015 emissions from the IIASA GAINS inventory. Net global radiative effects of short-lived climate forcers (including aerosols, ozone, and methane) from the gasoline and diesel sectors are +13.6 and +9.4 mW m-2, respectively. The annual mean net aerosol contributions to the net radiative effects of gasoline and diesel are -9.6 ± 2.0 and +8.8 ± 5.8 mW m-2. Aerosol indirect effects for the gasoline and diesel road vehicle sectors are -16.6 ± 2.1 and -40.6 ± 4.0 mW m-2. The fractional contributions of short-lived climate forcers to the total global climate impact including carbon dioxide on the 20-year time scale are similar, 14.9% and 14.4% for gasoline and diesel, respectively. Global annual total PM2.5- and ozone-induced premature deaths for gasoline and diesel sectors approach 115,000 (95% CI: 69,000-153,600) and 122,100 (95% CI: 78,500-157,500), with corresponding years of life lost of 2.10 (95% CI: 1.23-2.66) and 2.21 (95% CI: 1.47-2.85) million years. Substantial regional variability of premature death rates is found for the diesel sector when the regional health effects are normalized by the annual total regional vehicle distance traveled. Regional premature death rates for the gasoline and diesel sectors, respectively, vary by a factor of eight and two orders of magnitude, with India showing the highest for both gasoline and diesel sectors.
RESUMO
Air pollution is one of the most harmful consequences of China's rapid economic development and urbanization. Particularly in the Beijing-Tianjin-Hebei (BTH) regions, particulate matter concentrations have consistently exceeded the national air quality standards. Over the last years, China implemented ambitious measures to reduce emissions from the power, industry and transportation sectors, with notable success during the 11th and 12th Five Year Plan (FYP) periods. However, such strategies appear to be insufficient to reduce the ambient PM2.5 concentration below the National Air Quality Standard of 35⯵gâ¯m-3 across the BTH region within the next 15â¯years. We find that a comprehensive mitigation strategy for the residential sector in the BTH region would deliver substantial air quality benefits. Beyond the already planned expansion of district heating and natural gas distribution in urban centers and the foreseen curtailment of coal use for households, such a strategy would redirect some natural gas from power generation units towards the residential sector. Rural households would replace biomass for cooking by liquid petroleum gas (LPG) and electricity, and substitute coal for heating by briquettes. Jointly, these measures could reduce the primary PM2.5 and SO2 emissions by 28% and 11%, respectively, and the population-weighted PM2.5 concentrations by 13%, i.e., from 68⯵gâ¯m-3 to 59⯵gâ¯m-3. We estimate that such a strategy would reduce premature deaths attributable to ambient and indoor air pollution by almost one third.