Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 27(10): 2638-2647, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34545789

RESUMO

Lymphocytic choriomeningitis virus (LCMV) is an Old World mammarenavirus found worldwide because of its association with the house mouse. When LCMV spills over to immunocompetent humans, the virus can cause aseptic meningitis; in immunocompromised persons, systemic infection and death can occur. Central Europe is a strategic location for the study of LCMV evolutionary history and host specificity because of the presence of a hybrid zone (genetic barrier) between 2 house mouse subspecies, Mus musculus musculus and M. musculus domesticus. We report LCMV prevalence in natural mouse populations from a Czech Republic-Germany transect and genomic characterization of 2 new LCMV variants from the Czech Republic. We demonstrate that the main division in the LCMV phylogenetic tree corresponds to mouse host subspecies and, when the virus is found in human hosts, the mouse subspecies found at the spillover location. Therefore, LCMV strains infecting humans can be predicted by the genetic structure of house mice.


Assuntos
Coriomeningite Linfocítica , Doenças dos Roedores , Animais , Europa (Continente)/epidemiologia , Genoma , Coriomeningite Linfocítica/epidemiologia , Vírus da Coriomeningite Linfocítica/genética , Camundongos , Filogenia
2.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38730559

RESUMO

The gut microbiota of vertebrates is acquired from the environment and other individuals, including parents and unrelated conspecifics. In the laboratory mouse, a key animal model, inter-individual interactions are severely limited and its gut microbiota is abnormal. Surprisingly, our understanding of how inter-individual transmission impacts house mouse gut microbiota is solely derived from laboratory experiments. We investigated the effects of inter-individual transmission on gut microbiota in two subspecies of house mice (Mus musculus musculus and M. m. domesticus) raised in a semi-natural environment without social or mating restrictions. We assessed the correlation between microbiota composition (16S rRNA profiles), social contact intensity (microtransponder-based social networks), and mouse relatedness (microsatellite-based pedigrees). Inter-individual transmission had a greater impact on the lower gut (colon and cecum) than on the small intestine (ileum). In the lower gut, relatedness and social contact independently influenced microbiota similarity. Despite female-biased parental care, both parents exerted a similar influence on their offspring's microbiota, diminishing with the offspring's age in adulthood. Inter-individual transmission was more pronounced in M. m. domesticus, a subspecies, with a social and reproductive network divided into more closed modules. This suggests that the transmission magnitude depends on the social and genetic structure of the studied population.


Assuntos
Microbioma Gastrointestinal , RNA Ribossômico 16S , Animais , Microbioma Gastrointestinal/genética , Camundongos , Feminino , RNA Ribossômico 16S/genética , Masculino , Repetições de Microssatélites , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação
3.
Genes (Basel) ; 14(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003032

RESUMO

Mouse wild-derived strains (WDSs) combine the advantages of classical laboratory stocks and wild animals, and thus appear to be promising tools for diverse biomedical and evolutionary studies. We employed 18 WDSs representing three non-synanthropic species (Mus spretus, Mus spicilegus, and M. macedonicus) and three house mouse subspecies (Mus musculus musculus, M. m. domesticus, M. m. castaneus), which are all important human commensals to explore whether the number of major urinary protein (MUP) genes and their final protein levels in urine are correlated with the level of commensalism. Contrary to expectations, the MUP copy number (CN) and protein excretion in the strains derived from M. m. castaneus, which is supposed to be the strongest commensal, were not significantly different from the non-commensal species. Regardless of an overall tendency for higher MUP amounts in taxa with a higher CN, there was no significant correlation at the strain level. Our study thus suggests that expansion of the Mup cluster, which appeared before the house mouse diversification, is unlikely to facilitate commensalism with humans in three house mouse subspecies. Finally, we found considerable variation among con(sub)specific WDSs, warning against generalisations of results based on a few strains.


Assuntos
Animais Selvagens , Simbiose , Animais , Camundongos , Humanos , Simbiose/genética , Evolução Biológica
4.
Evolution ; 77(6): 1330-1340, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36959734

RESUMO

A remarkable gene copy number (CN) arms race system has recently been described in laboratory mice, where Slx;Slxl1 and Sly genes compete over transmission by altering the fertilization success of X and Y chromosome-bearing sperm, respectively. Here, we focus on this system in nature, where natural selection can counter CN/gene product escalation. Our model is house mouse subspecies hybridizing in Europe. In some regions, Y chromosomes of the Eastern subspecies have introgressed onto Western genomic backgrounds, accompanied by sex ratio distortion in favor of males, consistent with the inbred lines suggested mechanism: Overabundance of SLY protein expressed by invading Y chromosomes. We take Slx as representative of the X side of this arms race and measure Slx|Sly CN and expression across an "Invasion" transect where Ys introgress and a "Control" transect with negligible introgression. Since we found similar Slx|Sly ratios in both transects, SLY overabundance is unlikely to explain the introgression. However, Slx CN is relatively low in the introgression area, suggesting that Slx is less able to combat Sly effects here. Furthermore, deterministic changes in Slx;Sly expression proportions versus CN proportions suggest standing variation for trans regulation of Slx|Sly is being co-opted in nature where their arms race reduces population fitness.


Assuntos
Sêmen , Cromossomo Y , Camundongos , Animais , Masculino , Cromossomo Y/genética , Espermatozoides/fisiologia , Dosagem de Genes , Europa (Continente)
5.
Ecol Evol ; 12(10): e9407, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36262266

RESUMO

Predators attack conspicuous prey phenotypes that are present in the environment. Male display behavior of conspicuous nuptial coloration becomes risky in the presence of a predator, and adult males face higher predation risk. High predation risk in one sex will lead to low survival and sex ratio bias in adult cohorts, unless the increased predation risk is compensated by higher escape rate.Here, we tested the hypothesis that sand lizards (Lacerta agilis) have sex-specific predation risk and escape rate. We expected the differences to manifest in changes in sex ratio with age, differences in frequency of tail autotomy, and in sex-specific survival rate.We developed a statistical model to estimate predation risk and escape rate, combining the observed sex ratio and frequency of tail autotomy with likelihood-based survival rate. Using Bayesian framework, we estimated the model parameters. We projected the date of the tail autotomy events from growth rates derived from capture-recapture data measurements.We found statistically stable sex ratio in age groups, equal frequency of tail regenerates between sexes, and similar survival rate. Predation risk is similar between sexes, and escape rate increases survival by about 5%. We found low survival rate and a low number of tail autotomy events in females during months when sand lizards mate and lay eggs, indicating high predator pressure throughout reproduction. Our data show that gravid females fail to escape predation.The risks of reproduction season in an ectotherm are a convolution of morphological changes (conspicuous coloration in males and body allometry changes in gravid females), behavior (nuptial displays), and environmental conditions which challenge lizard thermal performance. Performance of endotherm predators in cold spring months endangers gravid females more than displaying males in bright nuptial coloration.

6.
Ecol Evol ; 12(12): e9683, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36590341

RESUMO

It is widely acknowledged that population structure can have a substantial impact on evolutionary trajectories. In social animals, this structure is strongly influenced by relationships among the population members, so studies of differences in social structure between diverging populations or nascent species are of prime interest. Ideal models for such a study are two house mouse subspecies, Mus musculus musculus and M. m. domesticus, meeting in Europe along a secondary contact zone. Though the latter subspecies has usually been supposed to form tighter and more isolated social units than the former, the evidence is still inconclusive. Here, we carried out a series of radiofrequency identification experiments in semi-natural enclosures to gather large longitudinal data sets on individual mouse movements. The data were summarized in the form of uni- and multi-layer social networks. Within them, we could delimit and describe the social units ("modules"). While the number of estimated units was similar in both subspecies, domesticus revealed a more "modular" structure. This subspecies also showed more intramodular social interactions, higher spatial module separation, higher intramodular persistence of parent-offspring contacts, and lower multiple paternity, suggesting more effective control of dominant males over reproduction. We also demonstrate that long-lasting modules can be identified with basic reproductive units or demes. We thus provide the first robust evidence that the two subspecies differ in their social structure and dynamics of the structure formation.

7.
FEMS Microbiol Ecol ; 98(8)2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35767862

RESUMO

The gastrointestinal microbiota (GM) is considered an important component of the vertebrate holobiont. GM-host interactions influence the fitness of holobionts and are, therefore, an integral part of evolution. The house mouse is a prominent model for GM-host interactions, and evidence suggests a role for GM in mouse speciation. However, previous studies based on short 16S rRNA GM profiles of wild house mouse subspecies failed to detect GM divergence, which is a prerequisite for the inclusion of GM in Dobzhansky-Muller incompatibilities. Here, we used standard 16S rRNA GM profiling in two mouse subspecies, Mus musculus musculus and M. m. domesticus, including the intestinal mucosa and content of three gut sections (ileum, caecum, and colon). We reduced environmental variability by sampling GM in the offspring of wild mice bred under seminatural conditions. Although the breeding conditions allowed a contact between the subspecies, we found a clear differentiation of GM between them, in all three gut sections. Differentiation was mainly driven by several Helicobacters and two H. ganmani variants showed a signal of codivergence with their hosts. Helicobacters represent promising candidates for studying GM-host coadaptations and the fitness effects of their interactions.


Assuntos
Microbioma Gastrointestinal , Animais , Interações entre Hospedeiro e Microrganismos , Camundongos , RNA Ribossômico 16S/genética
8.
Behav Processes ; 183: 104316, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33421530

RESUMO

In social species such as house mouse, being dominant is vital. Determination of dominance may start early in life and vary during ontogeny. We asked whether pre-pubertal and adolescent behaviour predicts the rank a male mouse finally obtains. Moreover, we asked how dominant vs. subordinate adults differ in exploration and propensity to emigrate. We studied fraternal pairs as the simple social units, from weaning to full-grown adulthood. By utilizing two mouse subspecies known to differ in many behavioural traits, we take into account any potential subspecific idiosyncrasies. We did not find any significant effect of future social status on any behavioural type displayed before adulthood, but the subspecies themselves differ in behaviours prevailing in particular ontogeny phases. While musculus males start as more pro-social, they later became significantly more passive. Conversely, domesticus are slightly less passive at the beginning but significantly more proactive close to adulthood and rapidly establishing hierarchy through overt conflicts. We found no difference in exploration between ranks, however, domesticus males were significantly more active in an unknown area than musculus. Most importantly, while dominant domesticus males seem to be more prone to emigration, in musculus it was the subordinate males who left base significantly more often. This is consistent with extended contests of musculus males over dominance found in this study as well as with differences in endocrinological changes we have reported previously.


Assuntos
Hierarquia Social , Predomínio Social , Animais , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA