Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 142(3): 398-408, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20691900

RESUMO

DNA transposition has contributed significantly to evolution of eukaryotes and prokaryotes. Insertion sequences (ISs) are the simplest prokaryotic transposons and are divided into families on the basis of their organization and transposition mechanism. Here, we describe a link between transposition of IS608 and ISDra2, both members of the IS200/IS605 family, which uses obligatory single-stranded DNA intermediates, and the host replication fork. Replication direction through the IS plays a crucial role in excision: activity is maximal when the "top" IS strand is located on the lagging-strand template. Excision is stimulated upon transient inactivation of replicative helicase function or inhibition of Okazaki fragment synthesis. IS608 insertions also exhibit an orientation preference for the lagging-strand template and insertion can be specifically directed to stalled replication forks. An in silico genomic approach provides evidence that dissemination of other IS200/IS605 family members is also linked to host replication.


Assuntos
Replicação do DNA , Elementos de DNA Transponíveis , DNA de Cadeia Simples/metabolismo , Deinococcus/metabolismo , Escherichia coli/metabolismo , DNA Helicases/metabolismo , DNA Primase/metabolismo , Deinococcus/genética , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transativadores/metabolismo
2.
Cell ; 132(2): 208-20, 2008 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-18243097

RESUMO

The smallest known DNA transposases are those from the IS200/IS605 family. Here we show how the interplay of protein and DNA activates TnpA, the Helicobacter pylori IS608 transposase, for catalysis. First, transposon end binding causes a conformational change that aligns catalytically important protein residues within the active site. Subsequent precise cleavage at the left and right ends, the steps that liberate the transposon from its donor site, does not involve a site-specific DNA-binding domain. Rather, cleavage site recognition occurs by complementary base pairing with a TnpA-bound subterminal transposon DNA segment. Thus, the enzyme active site is constructed from elements of both protein and DNA, reminiscent of the interdependence of protein and RNA in the ribosome. Our structural results explain why the transposon ends are asymmetric and how the transposon selects a target site for integration, and they allow us to propose a molecular model for the entire transposition reaction.


Assuntos
Elementos de DNA Transponíveis/genética , Transposases/metabolismo , Alanina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Catálise , Cristalização , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/metabolismo , Dimerização , Ativação Enzimática , Helicobacter pylori/enzimologia , Ligação de Hidrogênio , Modelos Genéticos , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Transposases/química , Transposases/genética , Tirosina/genética , Tirosina/metabolismo
3.
Nucleic Acids Res ; 46(8): 4152-4163, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29635476

RESUMO

Transposable elements are efficient DNA carriers and thus important tools for transgenesis and insertional mutagenesis. However, their poor target sequence specificity constitutes an important limitation for site-directed applications. The insertion sequence IS608 from Helicobacter pylori recognizes a specific tetranucleotide sequence by base pairing, and its target choice can be re-programmed by changes in the transposon DNA. Here, we present the crystal structure of the IS608 target capture complex in an active conformation, providing a complete picture of the molecular interactions between transposon and target DNA prior to integration. Based on this, we engineered IS608 variants to direct their integration specifically to various 12/17-nt long target sites by extending the base pair interaction network between the transposon and the target DNA. We demonstrate in vitro that the engineered transposons efficiently select their intended target sites. Our data further elucidate how the distinct secondary structure of the single-stranded transposon intermediate prevents extended target specificity in the wild-type transposon, allowing it to move between diverse genomic sites. Our strategy enables efficient targeting of unique DNA sequences with high specificity in an easily programmable manner, opening possibilities for the use of the IS608 system for site-specific gene insertions.


Assuntos
Elementos de DNA Transponíveis , DNA Bacteriano/química , Pareamento de Bases , Sequência de Bases , Engenharia Genética , Helicobacter pylori/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Transposases/química , Transposases/metabolismo
4.
Mol Cell ; 34(5): 612-9, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19524540

RESUMO

Target site choice is a complex and poorly understood aspect of DNA transposition despite its importance in rational transposon-mediated gene delivery. Though most transposons choose target sites essentially randomly or with some slight sequence or structural preferences, insertion sequence IS608 from Helicobacter pylori, which transposes using single-stranded DNA, always inserts just 3' of a TTAC tetranucleotide. Our results from studies on the IS608 transposition mechanism demonstrated that the transposase recognizes its target site by co-opting an internal segment of transposon DNA and utilizes it for specific recognition of the target sites through base-pairing. This suggested a way to redirect IS608 transposition to novel target sites. As we demonstrate here, we can now direct insertions in a predictable way into a variety of different chosen target sequences, both in vitro and in vivo.


Assuntos
Proteínas de Bactérias/fisiologia , Elementos de DNA Transponíveis/fisiologia , DNA de Cadeia Simples/química , Helicobacter pylori/genética , Modelos Genéticos , Transposases/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Pareamento de Bases , Sequência de Bases , Mutação Puntual , Transposases/química , Transposases/genética
5.
Q Rev Biophys ; 45(4): 493-521, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23217365

RESUMO

DNA transposases are enzymes that catalyze the movement of discrete pieces of DNA from one location in the genome to another. Transposition occurs through a series of controlled DNA strand cleavage and subsequent integration reactions that are carried out by nucleoprotein complexes known as transpososomes. Transpososomes are dynamic assemblies which must undergo conformational changes that control DNA breaks and ensure that, once started, the transposition reaction goes to completion. They provide a precise architecture within which the chemical reactions involved in transposon movement occur, but adopt different conformational states as transposition progresses. Their components also vary as they must, at some stage, include target DNA and sometimes even host-encoded proteins. A very limited number of transpososome states have been crystallographically captured, and here we provide an overview of the various structures determined to date. These structures include examples of DNA transposases that catalyze transposition by a cut-and-paste mechanism using an RNaseH-like nuclease catalytic domain, those that transpose using only single-stranded DNA substrates and targets, and the retroviral integrases that carry out an integration reaction very similar to DNA transposition. Given that there are a number of common functional requirements for transposition, it is remarkable how these are satisfied by complex assemblies that are so architecturally different.


Assuntos
Elementos de DNA Transponíveis/genética , Variação Genética , Animais , Humanos , Conformação de Ácido Nucleico , Transposases/metabolismo
6.
EMBO J ; 29(22): 3840-52, 2010 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-20890269

RESUMO

Bacterial insertion sequences (ISs) from the IS200/IS605 family encode the smallest known DNA transposases and mobilize through single-stranded DNA transposition. Transposition by one particular family member, ISDra2 from Deinococcus radiodurans, is dramatically stimulated upon massive γ irradiation. We have determined the crystal structures of four ISDra2 transposase/IS end complexes; combined with in vivo activity assays and fluorescence anisotropy binding measurements, these have revealed the molecular basis of strand discrimination and transposase action. The structures also show that previously established structural rules of target site recognition that allow different specific sequences to be targeted are only partially conserved among family members. Furthermore, we have captured a fully assembled active site including the scissile phosphate bound by a divalent metal ion cofactor (Cd²(+)) that supports DNA cleavage. Finally, the observed active site rearrangements when the transposase binds a metal ion in which it is inactive provide a clear rationale for metal ion specificity.


Assuntos
DNA Bacteriano/metabolismo , DNA de Cadeia Simples/metabolismo , Deinococcus/enzimologia , Transposases/química , Transposases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Elementos de DNA Transponíveis , DNA Bacteriano/química , DNA de Cadeia Simples/química , Deinococcus/química , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estrutura Secundária de Proteína , Alinhamento de Sequência , Transposases/genética , Zinco/metabolismo
7.
J Virol ; 86(6): 3337-46, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22205752

RESUMO

The adeno-associated virus (AAV) genome encodes four Rep proteins, all of which contain an SF3 helicase domain. The larger Rep proteins, Rep78 and Rep68, are required for viral replication, whereas Rep40 and Rep52 are needed to package AAV genomes into preformed capsids; these smaller proteins are missing the site-specific DNA-binding and endonuclease domain found in Rep68/78. Other viral SF3 helicases, such as the simian virus 40 large T antigen and the papillomavirus E1 protein, are active as hexameric assemblies. However, Rep40 and Rep52 have not been observed to form stable oligomers on their own or with DNA, suggesting that important determinants of helicase multimerization lie outside the helicase domain. Here, we report that when the 23-residue linker that connects the endonuclease and helicase domains is appended to the adeno-associated virus type 5 (AAV5) helicase domain, the resulting protein forms discrete complexes on DNA consistent with single or double hexamers. The formation of these complexes does not require the Rep binding site sequence, nor is it nucleotide dependent. These complexes have stimulated ATPase and helicase activities relative to the helicase domain alone, indicating that they are catalytically relevant, a result supported by negative-stain electron microscopy images of hexameric rings. Similarly, the addition of the linker region to the AAV5 Rep endonuclease domain also confers on it the ability to bind and multimerize on nonspecific double-stranded DNA. We conclude that the linker is likely a key contributor to Rep68/78 DNA-dependent oligomerization and may play an important role in mediating Rep68/78's conversion from site-specific DNA binding to nonspecific DNA unwinding.


Assuntos
DNA Helicases/metabolismo , DNA Viral/metabolismo , Dependovirus/enzimologia , Endonucleases/metabolismo , Proteínas Virais/metabolismo , Motivos de Aminoácidos , DNA Helicases/química , DNA Helicases/genética , DNA Viral/química , DNA Viral/genética , Dependovirus/química , Dependovirus/genética , Dependovirus/fisiologia , Endonucleases/química , Endonucleases/genética , Multimerização Proteica , Proteínas Virais/química , Proteínas Virais/genética , Replicação Viral
8.
Crit Rev Biochem Mol Biol ; 45(1): 50-69, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20067338

RESUMO

DNA rearrangements are important in genome function and evolution. Genetic material can be rearranged inadvertently during processes such as DNA repair, or can be moved in a controlled manner by enzymes specifically dedicated to the task. DNA transposases comprise one class of such enzymes. These move DNA segments known as transposons to new locations, without the need for sequence homology between transposon and target site. Several biochemically distinct pathways have evolved for DNA transposition, and genetic and biochemical studies have provided valuable insights into many of these. However, structural information on transposases - particularly with DNA substrates - has proven elusive in most cases. On the other hand, large-scale genome sequencing projects have led to an explosion in the number of annotated prokaryotic and eukaryotic mobile elements. Here, we briefly review biochemical and mechanistic aspects of DNA transposition, and propose that integrating sequence information with structural information using bioinformatics tools such as secondary structure prediction and protein threading can lead not only to an additional level of understanding but possibly also to testable hypotheses regarding transposition mechanisms. Detailed understanding of transposition pathways is a prerequisite for the long-term goal of exploiting DNA transposons as genetic tools and as a basis for genetic medical applications.


Assuntos
Bactérias/genética , Eucariotos/genética , Transposases , Animais , Bactérias/enzimologia , DNA/análise , DNA/genética , DNA/metabolismo , Eucariotos/enzimologia , Rearranjo Gênico , Genoma , Instabilidade Genômica , Humanos , Relação Estrutura-Atividade , Transposases/química , Transposases/fisiologia
9.
Nature ; 432(7020): 995-1001, 2004 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-15616554

RESUMO

Transposons are DNA sequences that encode functions that promote their movement to new locations in the genome. If unregulated, such movement could potentially insert additional DNA into genes, thereby disrupting gene expression and compromising an organism's viability. Transposable elements are classified by their transposition mechanisms and by the transposases that mediate their movement. The mechanism of movement of the eukaryotic hAT superfamily elements was previously unknown, but the divergent sequence of hAT transposases from other elements suggested that these elements might use a distinct mechanism. Here we have analysed transposition of the insect hAT element Hermes in vitro. Like other transposons, Hermes excises from DNA via double-strand breaks between the donor-site DNA and the transposon ends, and the newly exposed transposon ends join to the target DNA. Interestingly, the ends of the donor double-strand breaks form hairpin intermediates, as observed during V(D)J recombination, the process which underlies the combinatorial formation of antigen receptor genes. Significant similarities exist in the catalytic amino acids of Hermes transposase, the V(D)J recombinase RAG, and retroviral integrase superfamily transposases, thereby linking the movement of transposable elements and V(D)J recombination.


Assuntos
Elementos de DNA Transponíveis/genética , Drosophila melanogaster/genética , Rearranjo Gênico do Linfócito B/genética , Recombinação Genética/genética , Transposases/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , DNA/química , DNA/genética , DNA/metabolismo , Drosophila melanogaster/enzimologia , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Conformação de Ácido Nucleico , Especificidade por Substrato , Transposases/genética
10.
Structure ; 15(6): 643-53, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17562312

RESUMO

Lamina-associated polypeptides (LAPs) are important components of the nuclear lamina, the dense network of filaments that supports the nuclear envelope and also extends into the nucleoplasm. The main protein constituents of the nuclear lamina are the constitutively expressed B-type lamins and the developmentally regulated A- and C-type lamins. LAP2alpha is the only non-membrane-associated member of the LAP family. It preferentially binds lamin A/C, has been implicated in cell-cycle regulation and chromatin organization, and has also been found to be a component of retroviral preintegration complexes. As an approach to understanding the role of LAP2alpha in cellular pathways, we have determined the crystal structure of the C-terminal domain of LAP2alpha, residues 459-693. The C-terminal domain is dimeric and possesses an extensive four-stranded, antiparallel coiled coil. The surface involved in binding lamin A/C is proposed based on results from alanine-scanning mutagenesis and a solid-phase overlay binding assay.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Membrana/química , Lâmina Nuclear/química , Proteínas Nucleares/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Dimerização , Lamina Tipo A/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Células NIH 3T3 , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mutação Puntual , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transfecção
11.
Curr Opin Struct Biol ; 15(1): 77-85, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15718137

RESUMO

The SF3 helicases, distinct from the more prevalent SF1 and SF2 helicases, were originally identified in the genomes of small DNA and RNA viruses. The first crystal structures of SF3 helicases have been determined, revealing a closer structural relationship to AAA+ proteins than to RecA, consistent with their participation in replication initiation. In conjunction with origin-binding domains, SF3 helicases are responsible for distorting DNA before replication forks can be assembled. At these forks, the SF3 helicases act as replicative helicases. The simian virus 40 SF3 helicase forms a hexameric ring, anticipated to be characteristic of the entire superfamily.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , Replicação do DNA , DNA Viral/química , RNA Helicases/química , RNA Helicases/metabolismo , Replicação Viral , Sítios de Ligação , DNA Viral/metabolismo , Genoma Viral , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
12.
Structure ; 11(11): 1310-1, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14604517

RESUMO

Emerging structural results confirm that the large Rolling Circle Replication initiator superfamily is composed of two classes of proteins that are circularly permutated with respect to each other, as initially suggested by sequence analysis. The two classes are united by the same endonucleolytic mechanism and a conserved Mg(2+) binding site containing multiple histidine ligands unique to this superfamily.


Assuntos
Proteínas de Ligação a DNA , Magnésio/química , Motivos de Aminoácidos , Sítios de Ligação , Conjugação Genética , Cristalografia por Raios X , DNA Helicases/fisiologia , Vírus de DNA/metabolismo , DNA Bacteriano , DNA de Cadeia Simples/química , Bases de Dados como Assunto , Endonucleases/metabolismo , Escherichia coli/metabolismo , Fator F/química , Histidina/química , Íons , Ligantes , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Origem de Replicação , Transativadores/fisiologia , Tirosina/química , Difração de Raios X , Zinco/química
13.
Artigo em Inglês | MEDLINE | ID: mdl-16511103

RESUMO

DNA transposition is the movement of a defined segment of DNA from one location to another. Although the enzymes that catalyze transposition in bacterial systems have been well characterized, much less is known about the families of transposase enzymes that function in higher organisms. Active transposons have been identified in many insect species, providing tools for gene identification and offering the possibility of altering the genotypes of natural insect populations. One of these active transposons is Hermes, a 2749-base-pair element from Musca domestica that encodes its own transposase. An N-terminally deleted version of the Hermes transposase (residues 79-612) has been overexpressed and purified, and crystals that diffract to 2.1 A resolution have been obtained at 277 K by the hanging-drop method.


Assuntos
Moscas Domésticas/enzimologia , Transposases/química , Animais , Clonagem Molecular , Cristalização/métodos , Deleção de Sequência , Transposases/genética , Transposases/isolamento & purificação , Volatilização , Difração de Raios X
14.
mBio ; 6(3): e00762, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26060276

RESUMO

UNLABELLED: Carbapenemase-producing Enterobacteriaceae (CPE), which are resistant to most or all known antibiotics, constitute a global threat to public health. Transposable elements are often associated with antibiotic resistance determinants, suggesting a role in the emergence of resistance. One insertion sequence, IS26, is frequently associated with resistance determinants, but its role remains unclear. We have analyzed the genomic contexts of 70 IS26 copies in several clinical and surveillance CPE isolates from the National Institutes of Health Clinical Center. We used target site duplications and their patterns as guides and found that a large fraction of plasmid reorganizations result from IS26 replicative transpositions, including replicon fusions, DNA inversions, and deletions. Replicative transposition could also be inferred for transposon Tn4401, which harbors the carbapenemase blaKPC gene. Thus, replicative transposition is important in the ongoing reorganization of plasmids carrying multidrug-resistant determinants, an observation that carries substantial clinical and epidemiological implications for understanding how such extreme drug resistance phenotypes evolve. IMPORTANCE: Although IS26 is frequently reported to reside in resistance plasmids of clinical isolates, the characteristic hallmark of transposition, target site duplication (TSD), is generally not observed, raising questions about the mode of transposition for IS26. The previous observation of cointegrate formation during transposition implies that IS26 transposes via a replicative mechanism. The other possible outcome of replicative transposition is DNA inversion or deletion, when transposition occurs intramolecularly, and this would also generate a specific TSD pattern that might also serve as supporting evidence for the transposition mechanism. The numerous examples we present here demonstrate that replicative transposition, used by many mobile elements (including IS26 and Tn4401), is prevalent in the plasmids of clinical isolates and results in significant plasmid reorganization. This study also provides a method to trace the evolution of resistance plasmids based on TSD patterns.


Assuntos
Replicação do DNA , Elementos de DNA Transponíveis , Enterobacteriaceae/genética , Rearranjo Gênico , Mutagênese Insercional , Plasmídeos , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/isolamento & purificação , Infecções por Enterobacteriaceae/microbiologia , Humanos , National Institutes of Health (U.S.) , Estados Unidos , beta-Lactamases/genética
15.
Mol Cell ; 29(3): 302-12, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18280236

RESUMO

Bacterial insertion sequences (IS) play an important role in restructuring their host genomes. IS608, from Helicobacter pylori, belongs to a newly recognized and widespread IS group with a unique transposition mechanism. We have reconstituted the entire set of transposition cleavage and strand transfer reactions in vitro and find that, unlike any other known transposition system, they strictly require single-strand DNA. TnpA, the shortest identified transposase, uses a nucleophilic tyrosine for these reactions. It recognizes and cleaves only the IS608 "top strand." The results support a transposition model involving excision of a single-strand circle with abutted left (LE) and right (RE) IS ends. Insertion occurs site specifically 3' to conserved and essential TTAC tetranucleotide and appears to be driven by LE. This single-strand transposition mode has important implications not only for dispersion of IS608 but also for the other members of this very large IS family.


Assuntos
Elementos de DNA Transponíveis/genética , DNA de Cadeia Simples/genética , Helicobacter pylori/genética , Sequência de Aminoácidos , Sequência de Bases , Catálise , DNA Circular/genética , DNA Circular/metabolismo , DNA de Cadeia Simples/metabolismo , Dimerização , Helicobacter pylori/enzimologia , Técnicas In Vitro , Cinética , Dados de Sequência Molecular , Plasmídeos , Recombinação Genética , Especificidade por Substrato , Transposases/química , Transposases/genética , Transposases/metabolismo , Tirosina/genética , Tirosina/metabolismo
16.
Biochemistry ; 42(51): 15264-72, 2003 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-14690436

RESUMO

The 14-3-3 proteins, a family of dimeric regulatory proteins, are involved in many biologically important processes. The common feature of 14-3-3 proteins is their ability to bind to other proteins in a phosphorylation-dependent manner. Through these binding interactions, 14-3-3 proteins work as molecular scaffolds, modulating the biological functions of their partners. 14-3-3 proteins recognize short motifs containing a phosphorylated serine or threonine residue. In this study, we have quantitatively characterized the in vitro interactions among 14-3-3, the Forkhead transcription factor FOXO4, and its target DNA, the insulin response element. Phosphorylation of FOXO4 (residues 11-213) by protein kinase B at Thr-28 and Ser-193 creates two 14-3-3 binding motifs. Analytical gel filtration and sedimentation equilibrium experiments indicate that doubly phosphorylated FOXO4 and 14-3-3zeta form a complex with 1:2 molar stoichiometry and a K(D) of less than 30 nM. In contrast, singly phosphorylated FOXO4 mutants bind 14-3-3zeta with significantly lower affinity while retaining the ability to bind DNA. An active role for 14-3-3 in the disassembly of the FOXO4/DNA complex is demonstrated by the fact that, in the presence of 14-3-3, two phosphorylated 14-3-3 binding motifs are needed for the complete inhibition of FOXO4 binding to its target DNA.


Assuntos
Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Proteínas Serina-Treonina Quinases , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Tirosina 3-Mono-Oxigenase/química , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas 14-3-3 , Motivos de Aminoácidos , Proteínas de Ciclo Celular , Fatores de Transcrição Forkhead , Humanos , Insulina/genética , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Elementos de Resposta , Serina/metabolismo , Treonina/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Tirosina 3-Mono-Oxigenase/genética , Ultracentrifugação
17.
Mol Cell ; 13(3): 403-14, 2004 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-14967147

RESUMO

Integration into a particular location in human chromosomes is a unique property of the adeno-associated virus (AAV). This reaction requires the viral Rep protein and AAV origin sequences. To understand how Rep recognizes DNA, we have determined the structures of the Rep endonuclease domain separately complexed with two DNA substrates: the Rep binding site within the viral inverted terminal repeat and one of the terminal hairpin arms. At the Rep binding site, five Rep monomers bind five tetranucleotide direct repeats; each repeat is recognized by two Rep monomers from opposing faces of the DNA. Stem-loop binding involves a protein interface on the opposite side of the molecule from the active site where ssDNA is cleaved. Rep therefore has three distinct binding sites within its endonuclease domain for its different DNA substrates. Use of these different interfaces generates the structural asymmetry necessary to regulate later events in viral replication and integration.


Assuntos
Proteínas de Ligação a DNA/genética , Dependovirus/genética , Proteínas Virais/genética , Replicação Viral/genética , Sítios de Ligação/genética , Endonucleases/genética , Humanos , Modelos Moleculares , Conformação Molecular , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , Especificidade por Substrato
18.
Mol Cell ; 10(2): 327-37, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12191478

RESUMO

Adeno-associated virus (AAV), unique among animal viruses in its ability to integrate into a specific chromosomal location, is a promising vector for human gene therapy. AAV Replication (Rep) protein is essential for viral replication and integration, and its amino terminal domain possesses site-specific DNA binding and endonuclease activities required for replication initiation and integration. This domain displays a novel endonuclease fold and demonstrates an unexpected structural relationship to other viral origin binding proteins such as the papillomavirus E1 protein and the SV40 T antigen. The active site, located at the bottom of a positively charged cleft, is formed by the spatial convergence of a divalent metal ion and two conserved sequence motifs that define the rolling circle replication superfamily.


Assuntos
DNA Viral/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Dependovirus/química , Origem de Replicação/genética , Proteínas Virais/química , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Calorimetria , Cátions Bivalentes/metabolismo , Cristalografia por Raios X , DNA Viral/genética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Relação Estrutura-Atividade
19.
EMBO J ; 23(15): 2972-81, 2004 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-15257292

RESUMO

Tn7 transposition requires the assembly of a nucleoprotein complex containing four self-encoded proteins, transposon ends, and target DNA. Within this complex, TnsC, the molecular switch that regulates transposition, and TnsA, one part of the transposase, interact directly. Here, we demonstrate that residues 504-555 of TnsC are responsible for TnsA/TnsC interaction. The crystal structure of the TnsA/TnsC(504-555) complex, resolved to 1.85 A, illustrates the burial of a large hydrophobic patch on the surface of TnsA. One consequence of sequestering this patch is a marked increase in the thermal stability of TnsA as shown by differential scanning calorimetry. A model based on the complex structure suggested that TnsA and a slightly longer version of the cocrystallized TnsC fragment (residues 495-555) might cooperate to bind DNA, a prediction confirmed using gel mobility shift assays. Donor DNA binding by the TnsA/TnsC(495-555) complex is correlated with the activation of the TnsAB transposase, as measured by double-stranded DNA cleavage assays, demonstrating the importance of the TnsA/TnsC interaction in affecting Tn7 transposition.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Transposases/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , DNA/metabolismo , Elementos de DNA Transponíveis/genética , Proteínas de Ligação a DNA/genética , Ativação Enzimática , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Desnaturação Proteica , Estrutura Quaternária de Proteína , Alinhamento de Sequência , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA