Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Plant Cell Environ ; 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38881245

RESUMO

This study determines the functional role of the plant ultraviolet-B radiation (UV-B) photoreceptor, UV RESISTANCE LOCUS 8 (UVR8) under natural conditions using a large-scale 'synchronized-genetic-perturbation-field-experiment'. Laboratory experiments have demonstrated a role for UVR8 in UV-B responses but do not reflect the complexity of outdoor conditions where 'genotype × environment' interactions can mask laboratory-observed responses. Arabidopsis thaliana knockout mutant, uvr8-7, and the corresponding Wassilewskija wild type, were sown outdoors on the same date at 21 locations across Europe, ranging from 39°N to 67°N latitude. Growth and climatic data were monitored until bolting. At the onset of bolting, rosette size, dry weight, and phenolics and glucosinolates were quantified. The uvr8-7 mutant developed a larger rosette and contained less kaempferol glycosides, quercetin glycosides and hydroxycinnamic acid derivatives than the wild type across all locations, demonstrating a role for UVR8 under field conditions. UV effects on rosette size and kaempferol glycoside content were UVR8 dependent, but independent of latitude. In contrast, differences between wild type and uvr8-7 in total quercetin glycosides, and the quercetin-to-kaempferol ratio decreased with increasing latitude, that is, a more variable UV response. Thus, the large-scale synchronized approach applied demonstrates a location-dependent functional role of UVR8 under natural conditions.

2.
Photochem Photobiol Sci ; 19(2): 217-228, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31961357

RESUMO

Pyridoxine (vitamin B6) and its vitamers are used by living organisms both as enzymatic cofactors and as antioxidants. We used Arabidopsis pyridoxine biosynthesis mutant pdx1.3-1 to study the involvement of the PLP-synthase main polypeptide PDX1 in plant responses to ultraviolet radiation of two different qualities, one containing primarily UV-A (315-400 nm) and the other containing both UV-A and UV-B (280-315 nm). The antioxidant capacity and the flavonoid and glucosinolate (GS) profiles were examined. As an indicator of stress, Fv/Fm of photosystem II reaction centers was used. In pdx1.3-1, UV-A + B exposure led to a significant 5% decrease in Fv/Fm on the last day (day 15), indicating mild stress at this time point. The antioxidant capacity of Col-0 wildtype increased significantly (50-73%) after 1 and 3 days of UV-A + B. Instead, in pdx1.3-1, the antioxidant capacity significantly decreased by 44-52% over the same time period, proving the importance of a full complement of functional PDX1 genes for the detoxification of reactive oxygen species. There were no significant changes in the flavonoid glycoside profile under any light condition. However, the GS profile was significantly altered, both with respect to Arabidopsis accession and exposure to UV. The difference in flavonoid and GS profiles reflects that the GS biosynthesis pathway contains at least one pyridoxine-dependent enzyme, whereas no such enzyme is used in flavonoid biosynthesis. Also, there was strong correlation between the antioxidant capacity and the content of some GS compounds. Our results show that vitamin B6 vitamers, functioning both as antioxidants and co-factors, are of importance for the physiological fitness of plants.


Assuntos
Antioxidantes/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Carbono-Nitrogênio Liases/metabolismo , Glucosinolatos/biossíntese , Raios Ultravioleta , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Carbono-Nitrogênio Liases/genética , Cromatografia Líquida de Alta Pressão , Flavonoides/biossíntese , Glucosinolatos/análise , Mutagênese , Complexo de Proteína do Fotossistema II/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo
3.
Photochem Photobiol Sci ; 18(2): 359-366, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30534744

RESUMO

ß-Aminobutyric acid (BABA) pre-treatment has been shown to alter both biotic and abiotic stress responses. The present study extends this observation to acclimative UV-B-response, which has not been explored in this context so far. A single soil application of 300 ppm BABA modified the non-enzymatic antioxidant capacities and the leaf hydrogen peroxide levels in tobacco (Nicotiana tabacum L.) leaves in response to a 9-day treatment with 5.4 kJ m-2 d-1 biologically effective supplementary UV-B radiation in a model experiment that was performed in a growth chamber. BABA decreased leaf hydrogen peroxide levels both as a single factor and in combination with UV-B, but neither BABA nor UV-B affected leaf photochemistry significantly. The total antioxidant capacities were increased by either BABA or UV-B, and this response was additive in BABA pre-treated leaves. These results together with the observed changes in hydroxyl radical neutralising ability and non-enzymatic hydrogen peroxide antioxidant capacities show that BABA pre-treatment (i) has a long-term effect on leaf antioxidants even in the absence of other factors and (ii) modifies acclimative readjustment of prooxidant-antioxidant balance in response to UV-B. BABA-inducible antioxidants do not include phenolic compounds as a UV-B-induced increase in the adaxial leaf flavonoid index and total leaf extract UV absorption were unaffected by BABA.


Assuntos
Aclimatação/efeitos da radiação , Aminobutiratos/farmacologia , Nicotiana/efeitos dos fármacos , Nicotiana/efeitos da radiação , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/efeitos da radiação , Raios Ultravioleta , Aclimatação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Folhas de Planta/fisiologia , Nicotiana/fisiologia
4.
Phytochem Anal ; 29(2): 129-136, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28895264

RESUMO

INTRODUCTION: Phenolic compounds are a chemically diverse group of plant secondary metabolites with important roles both in plant stress defence and human nutrition. OBJECTIVE: To explore structure-function relations potentiating phenolic compounds to promote leaf acclimation to light stress by excess photosynthetically active radiation (photoinhibition) and by solar ultraviolet (UV) radiation. METHODOLOGY: We report singlet oxygen and hydrogen peroxide antioxidant capacities and UV-absorbing properties of 27 flavonoids and 11 phenolic acids. Correlations of these characteristics in the whole data set and related activity-structure relationships in flavonoid data were investigated using simple statistical methods. RESULTS: In comparison to flavonoids, phenolic acids are relatively ineffective reactive oxygen neutralising antioxidants; and - with the exception of gallic acid - have poor reactivity to hydrogen peroxide. Singlet oxygen and hydrogen peroxide detoxifying capacities of flavonoids are positively correlated, largely due to the strong positive effect of the hydroxylation of the C-ring in position-3. 3-O-Glycosylation halves reactive oxygen species (ROS) reactivities of quercetin and myricetin but eradicates the hydrogen peroxide reactivity of kaemferol. B-ring polyhydroxylation (cathecol structure) increases the hydrogen peroxide antioxidant function but decreases UV-B (280-315 nm) absorption. UV-A (315-400 nm) absorption is increased by the B-ring C2-C3 double bond either in itself or in combination with the C4 oxo-group. CONCLUSION: Among the studied compounds, anthocyanins and flavonols were the strongest singlet oxygen and hydrogen peroxide scavengers, and are thus capable of supporting defence against both photoinhibition by visible light and UV stress in leaves, while flavanols may only be effective against the latter. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Estresse Oxidativo , Fenóis/metabolismo , Folhas de Planta/efeitos dos fármacos , Luz Solar , Antocianinas/metabolismo , Flavonoides/metabolismo , Ácido Gálico/metabolismo , Glicosilação , Peróxido de Hidrogênio/metabolismo , Fenóis/química , Fotossíntese , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Oxigênio Singlete/metabolismo , Espectrofotometria Ultravioleta , Relação Estrutura-Atividade
5.
Plant Cell Environ ; 40(11): 2790-2805, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28792065

RESUMO

A 2-year study explored metabolic and phenotypic plasticity of sun-acclimated Vitis vinifera cv. Pinot noir leaves collected from 12 locations across a 36.69-49.98°N latitudinal gradient. Leaf morphological and biochemical parameters were analysed in the context of meteorological parameters and the latitudinal gradient. We found that leaf fresh weight and area were negatively correlated with both global and ultraviolet (UV) radiation, cumulated global radiation being a stronger correlator. Cumulative UV radiation (sumUVR) was the strongest correlator with most leaf metabolites and pigments. Leaf UV-absorbing pigments, total antioxidant capacities, and phenolic compounds increased with increasing sumUVR, whereas total carotenoids and xanthophylls decreased. Despite of this reallocation of metabolic resources from carotenoids to phenolics, an increase in xanthophyll-cycle pigments (the sum of the amounts of three xanthophylls: violaxanthin, antheraxanthin, and zeaxanthin) with increasing sumUVR indicates active, dynamic protection for the photosynthetic apparatus. In addition, increased amounts of flavonoids (quercetin glycosides) and constitutive ß-carotene and α-tocopherol pools provide antioxidant protection against reactive oxygen species. However, rather than a continuum of plant acclimation responses, principal component analysis indicates clusters of metabolic states across the explored 1,500-km-long latitudinal gradient. This study emphasizes the physiological component of plant responses to latitudinal gradients and reveals the physiological plasticity that may act to complement genetic adaptations.


Assuntos
Clima , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Vitis/anatomia & histologia , Vitis/fisiologia , Absorção de Radiação , Antioxidantes/metabolismo , Biomassa , Carotenoides/análise , Europa (Continente) , Geografia , Metaboloma , Fenóis/análise , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Análise de Componente Principal , Raios Ultravioleta , Vitis/metabolismo , Vitis/efeitos da radiação , Xantofilas/análise , alfa-Tocoferol/análise
6.
Molecules ; 21(2)2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26867192

RESUMO

Thirty-seven samples of naturally occurring phenolic compounds were evaluated using three common in vitro assays for total antioxidant activity (TAC) testing: the Trolox Equivalent Antioxidant Capacity (TEAC), the Ferric Reducing Antioxidant Potential (FRAP) and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, in addition to the Folin-Ciocalteu reagent reactivity (FCR). We found that antioxidant hierarchies depended on the choice of assay and applied ANOVA analyses to explore underlying structure-TAC dependencies. In addition to statistically confirming the empirically established connection between flavonoid ring-B catechol and high TEAC or FRAP, new correlations were also found. In flavonoids, (i) hydroxyl groups on ring-B had a positive effect on all four TAC assays; (ii) the presence of a 3-hydroxyl group on ring-C increased TEAC and FRAP, but had no effect on DPPH or FCR; (iii) Phenolic acids lacking a 3-hydroxyl group had significantly lower FRAP or DPPH than compounds having this structure, while TEAC or FCR were not affected. Results demonstrated that any TAC-based ranking of phenolic rich samples would very much depend on the choice of assay, and argue for use of more than one technique. As an illustration, we compared results of the above four assays using either grapevine leaf extracts or synthetic mixtures of compounds prepared according to major polyphenols identified in the leaves.


Assuntos
Polifenóis/química , Polifenóis/farmacologia , Vitis/química , Antioxidantes/química , Antioxidantes/farmacologia , Radical Hidroxila , Técnicas In Vitro , Extratos Vegetais/química , Folhas de Planta/química
7.
Acta Biol Hung ; 67(4): 447-450, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28000506

RESUMO

Assays assessing non-enzymatic hydrogen peroxide antioxidant capacities are often hampered by the high UV absorption of the sample itself. This is a typical problem in studies using plant extracts with high polyphenol content. Our assay is based on comparing the 405 nm absorption of the product of potassium iodine and hydrogen peroxide in the presence and absence of a putative hydrogen peroxide reactive antioxidant. This method is free of interference with either hydrogen peroxide or antioxidant self-absorption and it is also suitable for high-throughput plate reader applications.


Assuntos
Antioxidantes/metabolismo , Técnicas de Química Analítica/métodos , Peróxido de Hidrogênio/metabolismo , Extratos Vegetais/metabolismo , Iodeto de Potássio/metabolismo , Raios Ultravioleta , Polifenóis/metabolismo
8.
Plant Physiol Biochem ; 207: 108394, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38295527

RESUMO

To interpret the final steps of chlorophyll biosynthesis, detailed knowledge of etiolation symptoms is necessary. Most of our knowledge originates from studies on plant materials grown in complete darkness. Hardly any information is available about the plastid development in internal parenchyma cells of fleshy fruits in which the food supply is almost unlimited. In this work, etiolation symptoms were studied in pericarp layers of purple eggplant (Solanum melongena L.). Tissue layers of fruits developed under open-air conditions and of etiolated fruits were dissected in a dark room. Transmission and 77 K fluorescence spectroscopy and ultrastructural studies were performed. Photosynthetic activities were measured and pigment contents were determined in light-grown fruits. The purple exocarp and a 1-1.5 cm wide green mesocarp layer of large fruits fully shade the internal pericarp layers, thus protochloropyll (ide) accumulated, flash-photoactive 644 and 655 nm emitting protochlorophyllide complexes, and only small amounts of chlorophylls were found. Photosynthetic activity was detected only in the external, green layer, which had fully developed chloroplasts, and showed 77 K fluorescence emission spectra characteristic for green leaves. The innermost endocarp regions and the etiolated fruits contained mainly protochlorophyll (ide), proplastids, and etioplasts, i.e. they showed etiolation symptoms. These symptoms correspond to those of leaves of dark-grown seedlings but are stable for long periods due to the almost unlimited nourishment supply from storage parenchyma cells. These results prove that the laboratory works with artificially dark-developed plant materials are good models of natural chlorophyll biosynthesis and plastid development.


Assuntos
Solanum melongena , Luz , Clorofila , Fotossíntese , Folhas de Planta
9.
J Exp Bot ; 64(4): 1025-38, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23349141

RESUMO

Recent in vitro, in vivo, and theoretical experiments strongly suggest that sugar-(like) molecules counteract oxidative stress by acting as genuine reactive oxygen species (ROS) scavengers. A concept was proposed to include the vacuole as a part of the cellular antioxidant network. According to this view, sugars and sugar-like vacuolar compounds work in concert with vacuolar phenolic compounds and the 'classic' cytosolic antioxidant mechanisms. Among the biologically relevant ROS (H(2)O(2), O(2)·(-), and ·OH), hydroxyl radicals are the most reactive and dangerous species since there are no enzymatic systems known to neutralize them in any living beings. Therefore, it is important to study in more detail the radical reactions between ·OH and different biomolecules, including sugars. Here, Fenton reactions were used to compare the ·OH-scavenging capacities of a range of natural vacuolar compounds to establish relationships between antioxidant capacity and chemical structure and to unravel the mechanisms of ·OH-carbohydrate reactions. The in vitro work on the ·OH-scavenging capacity of sugars and phenolic compounds revealed a correlation between structure and ·OH-scavenging capacity. The number and position of the C=C type of linkages in phenolic compounds greatly influence antioxidant properties. Importantly, the splitting of disaccharides and oligosaccharides emerged as a predominant outcome of the ·OH-carbohydrate interaction. Moreover, non-enzymatic synthesis of new fructan oligosaccharides was found starting from 1-kestotriose. Based on these and previous findings, a working model is proposed describing the putative radical reactions involving fructans and secondary metabolites at the inner side of the tonoplast and in the vacuolar lumen.


Assuntos
Antioxidantes/química , Frutanos/química , Radical Hidroxila/química , Vacúolos/química , Cichorium intybus/química , Citosol/química , Dissacarídeos/química , Peróxido de Hidrogênio/química , Membranas Intracelulares/química , Ferro/química , Estrutura Molecular , Estresse Oxidativo , Fenóis/química , Extratos Vegetais/química , Folhas de Planta/química , Sacarose/química , Superóxidos/química
10.
Photochem Photobiol Sci ; 12(3): 432-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23160310

RESUMO

New double (fluorescent and spin) sensor molecules containing 4-amino substituted 1,8-naphthalimide as a fluorophore and a sterically hindered amine (pre-nitroxide) or pyrroline nitroxide as a quencher and radical capturing moiety were synthesized. All sensors were substituted with a diethylaminoethyl side-chain to increase the water solubility. Steady state fluorescence properties of these compounds and their responses to ROS in vitro are reported with perspectives of plant physiology use in vivo.


Assuntos
Anidridos/química , Anidridos/síntese química , Técnicas de Química Analítica/instrumentação , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Naftalenos/química , Naftalenos/síntese química , Oxigênio Singlete/metabolismo , Aminas/química , Técnicas de Química Sintética , Imidas/química , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Pirróis/química , Nicotiana/metabolismo , Nicotiana/fisiologia
11.
Acta Biol Hung ; 64(4): 500-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24275595

RESUMO

Spectrophotometric assays assessing total phenol and flavonoid content in plant samples are cheaper and faster and thus more accessible methods than analytical chromatography techniques, although these identify compound categories rather than individual compounds. Most methods are used and are published in several varieties and their general (chemically unspecific) nature is often neglected. The aim of the present in vitro study was to compare five frequently used methods in terms of cross reactivity and sensitivity using pure phenolic substances. Test compounds were selected to represent categories of phenolic compounds of special interest in plant stress studies. Examining the classic Folin-Ciocalteu test we found that in addition to phenolics, it was also reactive to ascorbate. Three flavonoid assays were also examined. These are usually applied to quantify (i) flavonols using aluminium-chloride, (ii) flavanons and flavanonols using 2,4-dinitrophenyl-hydrazine or (iii) flavanols using 4-dimethylamino-cinnamaldehyde. We found that all three methods were unaffected by the presence of ascorbate, but only the last one was specific to the group of compounds aimed at. Our results show that cross reactivities to various flavonoid groups should be taken into account when interpreting data from these assays. Methods utilizing the UV absorption of phenolic compounds were also tested and analyses of whole spectra were found more accurate than estimates based on absorptions at single wavelengths.


Assuntos
Flavonoides/análise , Fenóis/análise , Espectrofotometria/métodos
12.
Biochim Biophys Acta ; 1807(12): 1658-61, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21982982

RESUMO

In a recent article (Hakala-Yatkin and Tyystjärvi BBA 1807 (2011) 243-250) it was reported that the singlet oxygen spin traps 2,2,6,6-tetramethylpiperidine (TEMP) and 2,2,6,6-tetramethyl-4-piperidone (TEMPD) inhibit Photosystem II (PSII), the water oxidizing enzyme. O2 evolution, chlorophyll fluorescence and thermoluminescence were measured and were shown to be greatly affected by these chemicals. This work casts doubts over an earlier body of work in which these chemicals were used as spin traps for monitoring ¹O2 production when PSII was inhibited by high light intensities. Here we show that these spin probes hardly affect PSII. We show that the commercial batches of TEMPD and TEMP used by Hakala-Yatkin and Tyystjärvi contained impurities and/or derivatives that inhibited PSII and caused the specific effects on fluorescence. Earlier work that used pure spin traps to measure ¹O2 during photoinhibition, thus remains valid. However, concern must be expressed towards using these spin traps without proper controls.


Assuntos
Complexo de Proteína do Fotossistema II/antagonistas & inibidores , Piperidinas/química , Piperidonas/química , Oxigênio Singlete/química , Marcadores de Spin , Luz , Complexo de Proteína do Fotossistema II/metabolismo , Spinacia oleracea/química , Spinacia oleracea/citologia , Tilacoides/química
13.
Physiol Plant ; 142(1): 17-25, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20875060

RESUMO

The effect of superoxide anion radicals on the photosynthetic electron transport chain was studied in leaves and isolated thylakoids from tobacco. Superoxide was generated by methylviologen (MV) in the light at the acceptor side of photosystem I (PSI). In isolated thylakoids, the largest damage was observed at the level of the water-splitting activity in photosystem II (PSII), whereas PSI was hardly affected at the light intensities used. Addition of reactive oxygen scavengers protected PSII against damage. In leaves in the presence of MV, the quantum yield of PSII decreased during illumination whereas the size of the P(700) signal remained constant. There was no D1 protein loss in leaves illuminated in the presence of MV and lincomycin, but a modification to a slightly higher molecular mass was observed. These data show that PSII is more sensitive to superoxide or superoxide-derived reactive oxygen species (ROS) than PSI. In our experiments, this susceptibility was not because of any action of the ROS on the translation of the D1 protein or on the repair cycle of photosystem.


Assuntos
Nicotiana/efeitos dos fármacos , Nicotiana/metabolismo , Paraquat/farmacologia , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Superóxidos/metabolismo , Immunoblotting , Luz , Oxirredução/efeitos dos fármacos , Oxirredução/efeitos da radiação , Teoria Quântica , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/efeitos da radiação , Tilacoides/efeitos dos fármacos , Tilacoides/metabolismo , Tilacoides/efeitos da radiação , Nicotiana/efeitos da radiação
14.
Int J Food Sci Nutr ; 62(3): 207-14, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21043580

RESUMO

Prebiotics such as inulin (Inu)-type fructans and alternative natural sweeteners such as stevioside (Ste) become more popular as food ingredients. Evidence is accumulating that carbohydrates and carbohydrate-containing biomolecules can be considered true antioxidants, capable of scavenging reactive oxygen species (ROS). Here, we report on the ROS scavenging abilities of Inu and Ste in comparison with other sugars, sugar derivatives and arbutin. It is found that Inu and Ste are superior scavengers of both hydroxyl and superoxide radicals, more effective than mannitol and sucrose. Other compounds, such as 1-kestotriose, trehalose, raffinose and L-malic acid, also showed good reactivity to at least one of the two oxygen free radicals. The strong antioxidant properties of Inu and Ste are discussed. Within the plant vacuole, these compounds could play a crucial role in antioxidant defense mechanisms to help survive stresses. Addition to food assists in natural sweetening, food stabilization and maximizes health impact.


Assuntos
Antioxidantes/farmacologia , Diterpenos do Tipo Caurano/farmacologia , Glucosídeos/farmacologia , Inulina/farmacologia , Manitol/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Edulcorantes/farmacologia , Arbutina/fisiologia , Aditivos Alimentares/farmacologia , Sequestradores de Radicais Livres/farmacologia , Malatos/farmacologia , Oligossacarídeos/farmacologia , Prebióticos , Espécies Reativas de Oxigênio/metabolismo , Stevia/química
15.
Plants (Basel) ; 10(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34451615

RESUMO

Supplemental narrow-band 311 nm UV-B radiation was applied in order to study the effect of this specific wavelength on tobacco as a model plant. UV-B at photon fluxes varying between 2.9 and 9.9 µmol m-2 s-1 was applied to supplement 150 µmol m-2 s-1 photosynthetically active radiation (PAR) for four hours in the middle of the light period for four days. Narrow-band UV-B increased leaf flavonoid and phenolic acid contents. In leaves exposed to 311 nm radiation, superoxide dismutase activity increased, but phenolic peroxidase activity decreased, and the changes were proportional to the UV flux. Ascorbate peroxidase activities were not significantly affected. Narrow-band UV-B caused a dose-dependent linear decrease in the quantum efficiency of photosystem II, up to approximately 10% loss. A parallel decrease in non-regulated non-photochemical quenching indicates potential electron transfer to oxygen in UV-treated leaves. In addition to a flux-dependent increase in the imbalance between enzymatic H2O2 production and neutralization, this resulted in an approximately 50% increase in leaf H2O2 content under 2.9-6 µmol m-2 s-1 UV-B. Leaf H2O2 decreased to control levels under higher UV-B fluxes due to the onset of increased non-enzymatic H2O2- and superoxide-neutralizing capacities, which were not observed under lower fluxes. These antioxidant responses to 311 nm UV-B were different from our previous findings in plants exposed to broad-band UV-B. The results suggest that signaling pathways activated by 311 nm radiation are distinct from those stimulated by other wavelengths and support the heterogeneous regulation of plant UV responses.

16.
Physiol Plant ; 138(4): 485-92, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20002326

RESUMO

Type-II, singlet oxygen-mediated photosensitized damage has already been shown to occur in epicotyls of dark-germinated pea (Pisum sativum L.) seedlings upon illumination, resulting in fast turgor loss and wilting. In this study we show evidence that the palette of reactive oxygen species (ROS) is more complex. Hydrogen peroxide, superoxide and hydroxyl radicals are also formed, suggesting the occurrence of type-I reactions as well. Moreover, hydrogen peroxide injection into the epicotyls in the dark was able to provoke wilting directly. Formation of hydroxyl radicals could also be triggered by the addition of hydrogen peroxide in the dark, preferentially in the mid-sections where wilting occurs, showing that potential mediators of a Fenton reaction are present in the epicotyls, but unevenly distributed. Localization of light-inducible ROS formation fully (hydrogen peroxide) or partially (superoxide radicals) overlaps with the distribution of monomer protochlorophyllide complexes, showing that these pigment forms are capable of provoking both type-I and type-II reactions.


Assuntos
Luz , Pisum sativum/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Plântula/efeitos da radiação , Escuridão , Espectroscopia de Ressonância de Spin Eletrônica , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Microscopia Eletrônica , Microscopia de Fluorescência , Oxidantes/metabolismo , Oxidantes/farmacologia , Pisum sativum/metabolismo , Pisum sativum/fisiologia , Protoclorifilida/metabolismo , Plântula/fisiologia , Plântula/ultraestrutura
17.
Plant Cell Rep ; 29(1): 37-50, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19902215

RESUMO

When comparing the responses of two wheat (Triticum aestivum L.) genotypes, the drought-tolerant Plainsman V and the drought-sensitive Cappelle Desprez, to reduced amounts of irrigation water, we found differences in ascorbate metabolism: both ascorbate oxidation and transcription levels of enzymes processing ascorbate were changed. Relative transcript levels of ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) isoenzymes, predicted to localize in distinct subcellular organelles, showed different transcriptional changes in the two genotypes. Among APX coding mRNAs, expression levels of two cytosolic (cAPX I, II) and a thylakoid-bound (tAPX) variants increased significantly in Plainsman V while a cytosolic (cAPX I) and a stromal (sAPX II) APX coding transcripts were found to be higher in Cappelle Desprez after a 4-week-long water-deficit stress. Examining the MDARs, two cytosolic isoforms (cMDAR I, II) displayed significant up-regulation of mRNA levels in the sensitive genotype, whereas only one of them (cMDAR II) did in the tolerant cultivar. We found an up-regulated chloroplastic DHAR (chlDHAR) mRNA only in the sensitive Cappelle Desprez. However, increased expression levels of a cytosolic GR (cGR) and a chloroplastic GR (chlGR) were detected only in the tolerant Plainsman V. After 4 weeks of reduced irrigation, a significantly lower ascorbate/dehydroascorbate ratio was detected in leaves of the sensitive Cappelle Desprez than in the tolerant Plainsman V. Our results indicate that more robust transcription of ascorbate-based detoxification machinery may prevent an adverse shift of the cellular redox balance.


Assuntos
Ácido Ascórbico/metabolismo , Família Multigênica , Triticum/genética , Água/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Isoenzimas/genética , Isoenzimas/metabolismo , Peroxidação de Lipídeos , Oxirredução , Estresse Oxidativo , Oxirredutases/genética , Oxirredutases/metabolismo , RNA Mensageiro/metabolismo , Estresse Fisiológico , Transcrição Gênica , Triticum/metabolismo
18.
Acta Biol Hung ; 61 Suppl: 49-60, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21565764

RESUMO

Contributions of preventive and antioxidant (energy dissipating and singlet oxygen neutralizing) processes to tolerating high light stress (photoinhibition) were examined in green-house grown tobacco (Nicotiana tabacum) plants acclimated to high or low light conditions and also in sun and shade leaves collected from a natural grown linden tree (Tilia platyphyllos). Tobacco leaves survived a short (1 h) exposure to photoinhibition by activating non-regulated non-photochemical quenching [Y(NO)] rather than relying on photo-protective, regulated non-photochemical quenching [Y(NPQ)]. Low light acclimated leaves had lower singlet oxygen scavenging ability and activated Y(NO) to a larger extent than high light acclimated ones. Low light grown leaves also suffered singlet oxygen mediated photo-damage, while no singlet oxygen was detected in high light acclimated leaves during photoinhibition. Natural grown linden leaves, however, coped with prolonged daily exposures to high light mainly by activating regulated non-photochemical quenching Y(NPQ), although they also featured very efficient singlet oxygen neutralizing. Our results suggest that high light tolerance is achieved by preventing photoinhibition of photosystem II via efficient photo-protective energy dissipation rather than relying on quenching of stress-induced pro-oxidative agents.


Assuntos
Aclimatação , Luz , Folhas de Planta/efeitos da radiação , Oxigênio Singlete/metabolismo , Tilia/efeitos da radiação , Sequestradores de Radicais Livres/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Tilia/metabolismo , Nicotiana
19.
Sci Rep ; 10(1): 16303, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004945

RESUMO

Tobacco plants were grown in plant chambers for four weeks, then exposed to one of the following treatments for 4 days: (1) daily supplementary UV-B radiation corresponding to 6.9 kJ m-2 d-1 biologically effective dose (UV-B), (2) daily irrigation with 0.1 mM hydrogen peroxide, or (3) a parallel application of the two treatments (UV-B + H2O2). Neither the H2O2 nor the UV-B treatments were found to be damaging to leaf photosynthesis. Both single factor treatments increased leaf H2O2 contents but had distinct effects on various H2O2 neutralising mechanisms. Non-enzymatic H2O2 antioxidant capacities were increased by direct H2O2 treatment only, but not by UV-B. In contrast, enzymatic H2O2 neutralisation was mostly increased by UV-B, the responses showing an interesting diversity. When class-III peroxidase (POD) activity was assayed using an artificial substrate (ABTS, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid)), both treatments appeared to have a positive effect. However, only UV-B-treated leaves showed higher POD activities when phenolic compounds naturally occurring in tobacco leaves (chlorogenic acid or quercetin) were used as substrates. These results demonstrate a substrate-dependent, functional heterogeneity in POD and further suggest that the selective activation of specific isoforms in UV-B acclimated leaves is not triggered by excess H2O2 in these leaves.


Assuntos
Nicotiana/efeitos da radiação , Peroxidases/fisiologia , Proteínas de Plantas/fisiologia , Aclimatação , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidases/metabolismo , Fenóis/metabolismo , Proteínas de Plantas/metabolismo , Nicotiana/enzimologia , Raios Ultravioleta
20.
Front Plant Sci ; 11: 611247, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584754

RESUMO

Ultraviolet-B (UV-B; 280-315 nm) radiation induces the biosynthesis of secondary plant metabolites such as flavonoids. Flavonoids could also be enhanced by blue (420-490 nm) or green (490-585 nm) light. Flavonoids act as antioxidants and shielding components in the plant's response to UV-B exposure. They are shown to quench singlet oxygen and to be reactive to hydroxyl radical. The aim was to determine whether treatment with blue or green light can alter flavonoid profiles after pre-exposure to UV-B and whether they cause corresponding biological effects in Brassicaceae sprouts. Based on their different flavonoid profiles, three vegetables from the Brassicaceae were selected. Sprouts were treated with five subsequent doses (equals 5 days) of moderate UV-B (0.23 kJ m-2 day-1 UV-BBE), which was followed with two subsequent (equals 2 days) doses of either blue (99 µmol m-2 s-1) or green (119 µmol m-2 s-1) light. In sprouts of kale, kohlrabi, and rocket salad, flavonoid glycosides were identified by HPLC-DAD-ESI-MSn. Both Brassica oleracea species, kale and kohlrabi, showed mainly acylated quercetin and kaempferol glycosides. In contrast, in rocket salad, the main flavonol glycosides were quercetin glycosides. Blue light treatment after the UV-B treatment showed that quercetin and kaempferol glycosides were increased in the B. oleracea species kale and kohlrabi while-contrary to this-in rocket salad, there were only quercetin glycosides increased. Blue light treatment in general stabilized the enhanced concentrations of flavonoid glycosides while green treatment did not have this effect. Blue light treatment following the UV-B exposure resulted in a trend of increased singlet oxygen scavenging for kale and rocket. The hydroxyl radical scavenging capacity was independent from the light quality except for kale where an exposure with UV-B followed by a blue light treatment led to a higher hydroxyl radical scavenging capacity. These results underline the importance of different light qualities for the biosynthesis of reactive oxygen species that intercept secondary plant metabolites, but also show a pronounced species-dependent reaction, which is of special interest for growers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA