Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(39): 26808-26818, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39311751

RESUMO

The development of water-splitting photocatalysts capable of generating green hydrogen (H2) from water and sunlight is crucial for achieving carbon neutrality. Further enhancement of the photocatalytic water-splitting activity is essential to realizing this objective. Photocatalysts with specific exposed crystal facets can facilitate efficient charge separation of electrons/holes, thereby achieving high activity for water splitting. However, there have been no reports of ultrafine (∼1 nm) cocatalysts being loaded onto specific crystal facets of photocatalysts, despite cocatalysts being the actual reaction sites for water splitting. This study establishes a novel method for achieving facet-selective loading of ultrafine H2-evolution cocatalysts onto the {100} facets, which are the H2-evolution facets, of a strontium titanate photocatalyst. The resulting photocatalyst exhibits the highest apparent quantum yield achieved to date for strontium titanate. This research holds the potential to further improve various types of advanced photocatalysts and is expected to accelerate the transition to carbon neutrality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA