Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(33): 18435-18446, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32776038

RESUMO

X-ray Raman scattering (XRS) spectroscopy is an emerging inelastic scattering technique which uses hard X-rays to study the X-ray absorption edges of low-Z elements (e.g. C, N, O) in bulk. This study applies XRS spectroscopy to pyrolysis and hydrothermal carbons. These materials are thermochemically-produced carbon from renewable resources and represent a route for the sustainable production of carbon materials for many applications. Results confirm local structural differences between biomass-derived (Oak, Quercus Ilex) pyrolysis and hydrothermal carbon. In comparison with NEXAFS, XRS spectroscopy has been shown to be more resilient to experimental artefacts such as self-absorption. Density functional theory XRS calculations of potential structural sub-units confirm that hydrothermal carbon is a highly disordered carbon material formed principally of furan units linked by the α carbon atoms. Comparison of two pyrolysis temperatures (450 °C and 650 °C) shows the development of an increasingly condensed carbon structure. Based on our results, we have proposed a semi-quantitative route to pyrolysis condensation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA