Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 170(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39109421

RESUMO

Shiga toxin-producing Escherichia coli (STEC) is an important waterborne pathogen capable of causing serious gastrointestinal infections with potentially fatal complications, including haemolytic-uremic syndrome. All STEC serogroups harbour genes that encode at least one Shiga toxin (stx1 and/or stx2), which constitute the primary virulence factors of STEC. Loop-mediated isothermal amplification (LAMP) enables rapid real-time pathogen detection with a high degree of specificity and sensitivity. The aim of this study was to develop and validate an on-site portable diagnostics workstation employing LAMP technology to permit rapid real-time STEC detection in environmental water samples. Water samples (n=28) were collected from groundwater wells (n=13), rivers (n=12), a turlough (n=2) and an agricultural drain (n=1) from the Corrib catchment in Galway. Water samples (100 ml) were passed through a 0.22 µm filter, and buffer was added to elute captured cells. Following filtration, eluates were tested directly using LAMP assays targeting stx1, stx2 and E. coli phoA genes. The portable diagnostics workstation was used in field studies to demonstrate the on-site testing capabilities of the instrument. Real-time PCR assays targeting stx1 and stx2 genes were used to confirm the results. The limit of detection for stx1, stx2 and phoA LAMP assays were 2, 2 and 6 copies, respectively. Overall, stx1, stx2 and phoA genes were detected by LAMP in 15/28 (53.6 %), 9/28 (32.2 %) and 24/28 (85.7 %) samples, respectively. For confirmation, the LAMP results for stx1 and stx2 correlated perfectly (100 %) with those obtained using PCR. The portable diagnostics workstation exhibited high sensitivity throughout the on-site operation, and the average time from sample collection to final result was 40 min. We describe a simple, transferable and efficient diagnostic technology for on-site molecular analysis of various water sources. This method allows on-site testing of drinking water, enabling evidence-based decision-making by public health and water management authorities.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Escherichia coli Shiga Toxigênica , Microbiologia da Água , Técnicas de Amplificação de Ácido Nucleico/métodos , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/instrumentação , Sensibilidade e Especificidade , Rios/microbiologia , Toxina Shiga I/genética , Água Subterrânea/microbiologia
2.
Mol Cell Probes ; 73: 101946, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38097144

RESUMO

Haemonchus contortus is a parasitic haematophagous nematode that primarily affects small ruminants and causes significant economic loss to the global livestock industry. Treatment of haemonchosis typically relies on broad-spectrum anthelmintics, resistance to which is an important cause of treatment failure. Resistance to levamisole remains less widespread than to other major anthelmintic classes, prompting the need for more effective and accurate surveillance to maintain its efficacy. Loop-primer endonuclease cleavage loop-mediated isothermal amplification (LEC-LAMP) is a recently developed diagnostic method that facilitates multiplex target detection with single nucleotide polymorphism (SNP) specificity and portable onsite testing. In this study, we designed a new LEC-LAMP assay and applied it to detect the levamisole resistance marker S168T in H. contortus. We explored multiplexing probes for both the resistant S168T and the susceptible S168 alleles in a single-tube assay. We then included a generic probe to detect the acr-8 gene in the multiplex assay, which could facilitate the quantification of both resistance markers and overall genetic material from H. contortus in a single step. Our results showed promising application of these technologies, demonstrating a proof-of-concept assay which is amenable to detection of resistance alleles within the parasite population, with the potential for multiplex detection, and point-of-care application enabled by lateral flow end-point detection. However, further optimisation and validation is necessary.


Assuntos
Anti-Helmínticos , Haemonchus , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Animais , Levamisol/farmacologia , Haemonchus/genética , Resistência a Medicamentos/genética , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico
3.
Int J Mol Sci ; 22(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199760

RESUMO

Polymerase chain reaction (PCR) is the standard in nucleic acid amplification technology for infectious disease pathogen detection and has been the primary diagnostic tool employed during the global COVID-19 pandemic. Various PCR technology adaptations, typically using two-oligonucleotide dye-binding methods or three-oligonucleotide hydrolysis probe systems, enable real-time multiplex target detection or single-base specificity for the identification of single-nucleotide polymorphisms (SNPs). A small number of two-oligonucleotide PCR systems facilitating both multiplex detection and SNP identification have been reported; however, these methods often have limitations in terms of target specificity, production of variable or false-positive results, and the requirement for extensive optimisation or post-amplification analysis. This study introduces 3' Tth endonuclease cleavage PCR (3TEC-PCR), a two-oligonucleotide PCR system incorporating a modified primer/probe and a thermostable cleavage enzyme, Tth endonuclease IV, for real-time multiplex detection and SNP identification. Complete analytical specificity, low limits of detection, single-base specificity, and simultaneous multiple target detection have been demonstrated in this study using 3TEC-PCR to identify bacterial meningitis associated pathogens. This is the first report of a two-oligonucleotide, real-time multiplex PCR technology with single-base specificity using Tth endonuclease IV.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único , Alelos , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/metabolismo , Haemophilus influenzae/genética , Humanos , Meningites Bacterianas/diagnóstico , Meningites Bacterianas/microbiologia , Neisseria meningitidis/genética , Streptococcus pneumoniae/genética
4.
Anal Biochem ; 546: 10-16, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29378166

RESUMO

Recombinase polymerase amplification (RPA) is an isothermal nucleic acid amplification technology that provides rapid and robust infectious disease pathogen detection, ideal for point-of-care (POC) diagnostics in disease-prevalent low-resource countries. We have developed and evaluated three duplex RPA assays incorporating competitive internal controls for the detection of leading bacterial meningitis pathogens. Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae singleplex RPA assays were initially developed and evaluated, demonstrating 100% specificity with limits of detection of 4.1, 8.5 and 3.9 genome copies per reaction, respectively. Each assay was further developed into internally controlled duplex RPA assays via the incorporation of internal amplification control templates. Clinical performance of each internally controlled duplex RPA assay was evaluated by testing 64 archived PCR-positive clinical samples. Compared to real-time PCR, all duplex RPA assays demonstrated 100% diagnostic specificity, with diagnostic sensitivities of 100%, 86.3% and 100% for the S. pneumoniae, N. meningitidis and H. influenzae assays, respectively. This study details the first report of internally controlled duplex RPA assays for the detection of bacterial meningitis pathogens: S. pneumoniae, N. meningitidis and H. influenzae. We have successfully demonstrated the clinical diagnostic utility of each duplex RPA assay, introducing effective diagnostic technology for POC bacterial meningitis identification in disease-prevalent developing countries.


Assuntos
DNA Bacteriano/genética , Meningites Bacterianas/diagnóstico , Técnicas de Amplificação de Ácido Nucleico , Reação em Cadeia da Polimerase , Recombinases/metabolismo , Haemophilus influenzae/genética , Humanos , Meningites Bacterianas/genética , Neisseria meningitidis/genética , Sistemas Automatizados de Assistência Junto ao Leito , Streptococcus pneumoniae/genética
5.
Int J Mol Sci ; 19(2)2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29425124

RESUMO

Bacterial meningitis infection is a leading global health concern for which rapid and accurate diagnosis is essential to reduce associated morbidity and mortality. Loop-mediated isothermal amplification (LAMP) offers an effective low-cost diagnostic approach; however, multiplex LAMP is difficult to achieve, limiting its application. We have developed novel real-time multiplex LAMP technology, TEC-LAMP, using Tth endonuclease IV and a unique LAMP primer/probe. This study evaluates the analytical specificity, limit of detection (LOD) and clinical application of an internally controlled multiplex TEC-LAMP assay for detection of leading bacterial meningitis pathogens: Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae. Analytical specificities were established by testing 168 bacterial strains, and LODs were determined using Probit analysis. The TEC-LAMP assay was 100% specific, with LODs for S. pneumoniae, N. meningitidis and H. influenzae of 39.5, 17.3 and 25.9 genome copies per reaction, respectively. Clinical performance was evaluated by testing 65 archived PCR-positive samples. Compared to singleplex real-time PCR, the multiplex TEC-LAMP assay demonstrated diagnostic sensitivity and specificity of 92.3% and 100%, respectively. This is the first report of a single-tube internally controlled multiplex LAMP assay for bacterial meningitis pathogen detection, and the first report of Tth endonuclease IV incorporation into nucleic acid amplification diagnostic technology.


Assuntos
Meningites Bacterianas/sangue , Técnicas de Diagnóstico Molecular/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , Enzimas de Restrição do DNA/metabolismo , Humanos , Limite de Detecção , Técnicas de Diagnóstico Molecular/normas , Reação em Cadeia da Polimerase Multiplex/normas , Padrões de Referência
6.
BMC Infect Dis ; 15: 481, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26515409

RESUMO

BACKGROUND: Streptococcus pneumoniae is an important cause of microbial disease in humans. The introduction of multivalent vaccines has coincided with a dramatic decrease in the number of pneumococcal-related deaths. In spite of this, at a global level, pneumococcal infection remains an important cause of death among children under 5 years of age and in adults 65 years of age or older. In order to properly manage patients and control the spread of infection, a rapid and highly sensitive diagnostic method is needed for routine implementation, especially in resource-limited regions where pneumococcal disease is most prevalent. METHODS: Using the gene encoding leader peptidase A as a molecular diagnostics target, a real-time RPA assay was designed and optimised for the detection of S. pneumoniae in whole blood. The performance of the assay was compared to real-time PCR in terms of its analytical limit of detection and specificity. The inhibitory effect of human genomic DNA on amplification was investigated. The potential clinical utility of the assay was investigated using a small number of clinical samples. RESULTS: The RPA assay has a limit of detection equivalent to PCR (4.0 and 5.1 genome equivalents per reaction, respectively) and was capable of detecting the equivalent of <1 colony forming unit of S. pneumoniae when spiked into human whole blood. The RPA assay was 100 % inclusive (38/38 laboratory reference strains and 19/19 invasive clinical isolates) and 100 % exclusive; differentiating strains of S. pneumoniae species from other viridans group streptococci, including S. pseudopneumoniae. When applied to the analysis of a small number (n = 11) of clinical samples (blood culture positive for S. pneumoniae), the RPA assay was demonstrated to be both rapid and sensitive. CONCLUSIONS: The RPA assay developed in this work is shown to be as sensitive and as specific as PCR. In terms of reaction kinetics, the RPA assay is shown to exceed those of the PCR, with the RPA running to completion in 20 minutes and capable generating a positive signal in as little as 6 minutes. This work represents a potentially suitable assay for application in point-of-care settings.


Assuntos
DNA Bacteriano/sangue , Técnicas de Amplificação de Ácido Nucleico , Recombinases/metabolismo , Streptococcus pneumoniae/genética , Humanos , Infecções Pneumocócicas/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real , Streptococcus pneumoniae/isolamento & purificação
7.
Sci Rep ; 14(1): 12783, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834616

RESUMO

The Aurignacian is the first European technocomplex assigned to Homo sapiens recognized across a wide geographic extent. Although archaeologists have identified marked chrono-cultural shifts within the Aurignacian mostly by examining the techno-typological variations of stone and osseous tools, unraveling the underlying processes driving these changes remains a significant scientific challenge. Scholars have, for instance, hypothesized that the Campanian Ignimbrite (CI) super-eruption and the climatic deterioration associated with the onset of Heinrich Event 4 had a substantial impact on European foraging groups. The technological shift from the Protoaurignacian to the Early Aurignacian is regarded as an archaeological manifestation of adaptation to changing environments. However, some of the most crucial regions and stratigraphic sequences for testing these scenarios have been overlooked. In this study, we delve into the high-resolution stratigraphic sequence of Grotta di Castelcivita in southern Italy. Here, the Uluzzian is followed by three Aurignacian layers, sealed by the eruptive units of the CI. Employing a comprehensive range of quantitative methods-encompassing attribute analysis, 3D model analysis, and geometric morphometrics-we demonstrate that the key technological feature commonly associated with the Early Aurignacian developed well before the deposition of the CI tephra. Our study provides thus the first direct evidence that the volcanic super-eruption played no role in this cultural process. Furthermore, we show that local paleo-environmental proxies do not correlate with the identified patterns of cultural continuity and discontinuity. Consequently, we propose alternative research paths to explore the role of demography and regional trajectories in the development of the Upper Paleolithic.


Assuntos
Arqueologia , Itália , Humanos , História Antiga , Tecnologia , Evolução Cultural
8.
Am J Biol Anthropol ; 185(1): e24998, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39032165

RESUMO

OBJECTIVES: Grotta-Riparo di Uluzzo C (Apulia, southern Italy) is a pivotal site for investigating the evolution of the Middle Paleolithic and the earliest phases of the Upper Paleolithic in southern Italy, as the extensive stratigraphic record of this site includes a thick Mousterian sequence followed by the Uluzzian. Here, we investigate the taxonomic affinity of seven unpublished deciduous human teeth retrieved from the site of Uluzzo C in 1960. MATERIALS AND METHODS: The teeth are represented by seven plaster dental casts, which are housed at the Museo Civico di Paleontologia e Paletnologia in Maglie (Lecce, Apulia). The location of the original specimens remains unknown, rendering these casts the only human remains evidence yielded by Uluzzo C to date. Based on occlusal-view photographs and digital models of the casts, we examined the external morphology and morphometry of the teeth, comparing them to Homo sapiens and H. neanderthalensis samples. Through geometric morphometric methods and statistical analyses, we analyzed the crown outline of the deciduous molars. RESULTS: The teeth show morphological and morphometric features that are variably found in H. neanderthalensis, H. sapiens, or both. Specifically, crown outline analysis shows that all molars fall within H. neanderthalensis variability, except for Uluzzo 853 (lower right deciduous first molar), which falls within H. sapiens variability. DISCUSSION: This study provides the first taxonomic assessment of the hominin teeth from Uluzzo C. The results contribute additional insights into the Paleolithic peopling of southern Italy during a crucial period marked by the persistence of post-Tyrrhenian Neanderthal techno-complexes and the arrival of H. sapiens.


Assuntos
Fósseis , Hominidae , Itália , Animais , Hominidae/anatomia & histologia , Humanos , Dente Decíduo/anatomia & histologia , Homem de Neandertal/anatomia & histologia , Dente/anatomia & histologia , Dente Molar/anatomia & histologia , Paleodontologia , Modelos Dentários
9.
Nat Commun ; 15(1): 8248, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304646

RESUMO

The biological aspects of infancy within late Upper Palaeolithic populations and the role of southern refugia at the end of the Last Glacial Maximum are not yet fully understood. This study presents a multidisciplinary, high temporal resolution investigation of an Upper Palaeolithic infant from Grotta delle Mura (Apulia, southern Italy) combining palaeogenomics, dental palaeohistology, spatially-resolved geochemical analyses, direct radiocarbon dating, and traditional anthropological studies. The skeletal remains of the infant - Le Mura 1 - were directly dated to 17,320-16,910 cal BP. The results portray a biological history of the infant's development, early life, health and death (estimated at ~72 weeks). They identify, several phenotypic traits and a potential congenital disease in the infant, the mother's low mobility during gestation, and a high level of endogamy. Furthermore, the genomic data indicates an early spread of the Villabruna-like components along the Italian peninsula, confirming a population turnover around the time of the Last Glacial Maximum, and highlighting a general reduction in genetic variability from northern to southern Italy. Overall, Le Mura 1 contributes to our better understanding of the early stages of life and the genetic puzzle in the Italian peninsula at the end of the Last Glacial Maximum.


Assuntos
Fósseis , Itália , Humanos , Lactente , Feminino , História Antiga , Datação Radiométrica , Masculino , Hominidae/genética , Arqueologia , Dente , Variação Genética
10.
Microb Biotechnol ; 16(5): 977-989, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36734313

RESUMO

Environmental water is considered one of the main vehicles for the transmission of antimicrobial resistance (AMR), posing an increasing threat to humans and animals health. Continuous efforts are being made to eliminate AMR; however, the detection of AMR pathogens from water samples often requires at least one culture step, which is time-consuming and can limit sensitivity. In this study, we employed comparative genomics to identify the prevalence of AMR genes within among: Escherichia coli, Klebsiella, Salmonella enterica and Acinetobacter, using publicly available genomes. The mcr-1, blaKPC (KPC-1 to KPC-4 alleles), blaOXA-48, blaOXA-23 and blaVIM (VIM-1 and VIM-2 alleles) genes are of great medical and veterinary significance, thus were selected as targets for the development of isothermal loop-mediated amplification (LAMP) detection assays. We also developed a rapid and sensitive sample preparation method for an integrated culture-independent LAMP-based detection from water samples. The developed assays successfully detected the five AMR gene markers from pond water within 1 h and were 100% sensitive and specific with a detection limit of 0.0625 µg/mL and 10 cfu/mL for genomic DNA and spiked bacterial cells, respectively. The integrated detection can be easily implemented in resource-limited areas to enhance One Health AMR surveillances and improve diagnostics.


Assuntos
Antibacterianos , Proteínas de Escherichia coli , Animais , Humanos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Técnicas de Amplificação de Ácido Nucleico/métodos , Escherichia coli , Água , Sensibilidade e Especificidade
11.
Microbiol Spectr ; 11(1): e0331622, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36511696

RESUMO

Cefotaximase-Munich (CTX-M) extended-spectrum beta-lactamase (ESBL) enzymes produced by Enterobacteriaceae confer resistance to clinically relevant third-generation cephalosporins. CTX-M group 1 variants, CTX-M-1 and CTX-M-15, are the leading ESBL-producing Enterobacteriaceae associated with animal and human infection, respectively, and are an increasing antimicrobial resistance (AMR) global health concern. The blaCTX-M-1 and blaCTX-M-15 genes encoding these variants have an approximate nucleotide sequence similarity of 98.7%, making effective differential diagnostic monitoring difficult. Loop-primer endonuclease cleavage loop-mediated isothermal amplification (LEC-LAMP) enables rapid real-time multiplex pathogen detection with single-base specificity and portable on-site testing. We have developed an internally controlled multiplex CTX-M-1/15 LEC-LAMP assay for the differential detection of blaCTX-M-1 and blaCTX-M-15. Assay analytical specificity was established using a panel of human, animal, and environmental Escherichia coli isolates positive for blaCTX-M-1 (n = 18), blaCTX-M-15 (n = 35), and other closely related blaCTX-Ms (n = 38) from Ireland, Germany, and Portugal, with analytical sensitivity determined using probit regression analysis. Animal fecal sample testing using the CTX-M-1/15 LEC-LAMP assay in combination with a rapid DNA extraction protocol was carried out on porcine fecal samples previously confirmed to be PCR-positive for E. coli blaCTX-M. Portable instrumentation was used to further analyze each fecal sample and demonstrate the on-site testing capabilities of the LEC-LAMP assay with the rapid DNA extraction protocol. The CTX-M-1/15 LEC-LAMP assay demonstrated complete analytical specificity for the differential detection of both variants with sensitive low-level detection of 8.5 and 9.8 copies per reaction for blaCTX-M-1 and blaCTX-M-15, respectively, and E. coli blaCTX-M-1 was identified in all blaCTX-M positive porcine fecal samples tested. IMPORTANCE CTX-M ESBL-producing E. coli is an increasing AMR public health issue with the transmission between animals and humans via zoonotic pathogens now a major area of interest. Accurate and timely identification of ESBL-expressing E. coli CTX-M variants is essential for disease monitoring, targeted antibiotic treatment and infection control. This study details the first report of portable diagnostics technology for the rapid differential detection of CTX-M AMR markers blaCTX-M-1 and blaCTX-M-15, facilitating improved identification and surveillance of these closely related variants. Further application of this portable internally controlled multiplex CTX-M-1/15 LEC-LAMP assay will provide new information on the transmission and prevalence of these CTX-M ESBL alleles. Furthermore, this transferable diagnostic technology can be applied to other new and emerging relevant AMR markers of interest providing more efficient and specific portable pathogen detection for improved epidemiological surveillance.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , Animais , Suínos , Infecções por Escherichia coli/diagnóstico , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , beta-Lactamases/genética , Antibacterianos , Enterobacteriaceae/genética , DNA
12.
Anat Rec (Hoboken) ; 306(1): 124-142, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35656925

RESUMO

OBJECTIVE: The development of bipedalism is a very complex activity that contributes to shaping the anatomy of the foot. The talus, which starts ossifying in utero, may account for the developing stages from the late gestational phase onwards. Here, we explore the early development of the talus in both its internal and external morphology to broaden the knowledge of the anatomical changes that occur during early development. MATERIALS AND METHODS: The sample consists of high-resolution microCT scans of 28 modern juvenile tali (from 36 prenatal weeks to 2 years), from a broad chronological range from the Late Roman period to the 20th century. We applied geometric morphometric and whole-bone trabecular analysis to investigate the early talar morphological changes. RESULTS: In the youngest group (<6 postnatal months), the immature external shell is accompanied by an isotropic internal structure, with thin and densely packed trabeculae. After the initial attempts of locomotion, bone volume fraction decreases, while anisotropy and trabecular thickness increase. These internal changes correspond to the maturation of the external shell, which is now more defined and shows the development of the articular surfaces. DISCUSSION: The internal and external morphology of the human talus reflects the diverse load on the foot during the initial phases of the bipedal locomotion, with the youngest group potentially reflecting the lack of readiness of the human talus to bear forces and perform bipedal walking. These results highlight the link between mechanical loading and bone development in the human talus during the acquisition of bipedalism, providing new insight into the early phases of talar development.


Assuntos
Caminhada , Humanos , Microtomografia por Raio-X
13.
PLoS One ; 17(10): e0275614, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36227961

RESUMO

In this study we explore the potential of combining traditional zooarchaeological determination and proteomic identification of morphologically non-diagnostic bone fragments (ZooMS) collected from the Uluzzian levels of three Italian sites: Uluzzo C Rock Shelter, Roccia San Sebastiano cave, and Riparo del Broion. Moreover, we obtained glutamine deamidation ratios for all the contexts analysed during routine ZooMS screening of faunal samples, giving information on collagen preservation. We designed a selection protocol that maximizes the efficiency of the proteomics analyses by excluding particularly compromised fragments (e.g. from taphonomic processes), and that aims to identify new human fragments by favouring bones showing morphological traits more similar to Homo. ZooMS consistently provided taxonomic information in agreement with the faunal spectra outlined by traditional zooarchaeology. Our approach allows us to delineate and appreciate differences between the analysed contexts, particularly between the northern and southern sites, related to faunal, environmental, and climate composition, although no human remains were identified. We reconstructed the faunal assemblage of the different sites, giving voice to morphologically undiagnostic bone fragments. Thus, the combination of these analyses provides a more complete picture of the faunal assemblage and of the paleoenvironment during the Middle-Upper Palaeolithic transition in Italy.


Assuntos
Fósseis , Glutamina , Arqueologia , Osso e Ossos , Cavernas , Proteômica
14.
J Quat Sci ; 37(2): 235-256, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35874301

RESUMO

The Middle to Upper Palaeolithic transition, between 50 000 and 40 000 years ago, is a period of important ecological and cultural changes. In this framework, the Rock Shelter of Uluzzo C (Apulia, southern Italy) represents an important site due to Late Mousterian and Uluzzian evidence preserved in its stratigraphic sequence. Here, we present the results of a multidisciplinary analysis performed on the materials collected between 2016 and 2018 from the Uluzzian stratigraphic units (SUs) 3, 15 and 17. The analysis involved lithic technology, use-wear, zooarchaeology, ancient DNA of sediments and palaeoproteomics, completed by quartz single-grain optically stimulated luminescence dating of the cave sediments. The lithic assemblage is characterized by a volumetric production and a debitage with no or little management of the convexities (by using the bipolar technique), with the objective to produce bladelets and flakelets. The zooarchaeological study found evidence of butchery activity and of the possible exploitation of marine resources, while drawing a picture of a patchy landscape, composed of open forests and dry open environments surrounding the shelter. Ancient mitochondrial DNA from two mammalian taxa were recovered from the sediments. Preliminary zooarchaeology by mass spectrometry results are consistent with ancient DNA and zooarchaeological taxonomic information, while further palaeoproteomics investigations are ongoing. Our new data from the re-discovery of the Uluzzo C Rock Shelter represent an important contribution to better understand the meaning of the Uluzzian in the context of the Middle/Upper Palaeolithic transition in south-eastern Italy.

15.
J Mol Diagn ; 22(5): 640-651, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32409120

RESUMO

Loop-mediated isothermal amplification (LAMP) provides effective diagnostic technology for infectious disease pathogen identification and is compatible with inexpensive instrumentation for use in disease-prevalent developing regions. However, simultaneous multiple-target detection and single-nucleotide polymorphism (SNP) identification, essential properties of nucleic acid diagnostics, are difficult to achieve using LAMP. This study introduces loop-primer endonuclease cleavage (LEC)-LAMP, a singleplex or multiplex LAMP technology with single-base specificity for variable SNP identification. We developed a singleplex LEC-LAMP Neisseria meningitidis assay that demonstrated complete analytical specificity and a limit of detection of 3.1 genome copies per reaction. Small-scale clinical testing of this assay demonstrated 100% diagnostic specificity and sensitivity when assessed with anonymized DNA extracts from confirmed cases of bacterial meningitis infection. The single-base specificity of this assay indicated effective SNP identification properties when challenged with DNA templates containing SNPs located within a specific six-base region. This assay was modified to generate an allele-specific LEC-LAMP N. meningitidis assay that successfully demonstrated single-tube differentiation of wild-type and mutant allele templates. The singleplex assay was further modified to generate a multiplex LEC-LAMP assay that successfully demonstrated simultaneous multiple-target detection of three bacterial targets, N. meningitidis, Streptococcus pneumonia, and Hemophilus influenzae. LEC-LAMP is the first report of single-tube, real-time, singleplex or multiplex LAMP technology with single-base specificity for variable SNP identification.


Assuntos
Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico , Polimorfismo de Nucleotídeo Único , Alelos , Genes Bacterianos , Humanos , Meningite Meningocócica/diagnóstico , Meningite Meningocócica/microbiologia , Mutação , Neisseria meningitidis/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
J Microbiol Methods ; 127: 197-202, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27319375

RESUMO

Three duplex molecular beacon based real-time Nucleic Acid Sequence Based Amplification (NASBA) assays have been designed and experimentally validated targeting RNA transcripts for the detection and identification of Haemophilus influenzae, Neisseria meningitidis and Streptococcus pneumoniae respectively. Each real-time NASBA diagnostics assay includes an endogenous non-competitive Internal Amplification Control (IAC) to amplify the splice variant 1 mRNA of the Homo sapiens TBP gene from human total RNA. All three duplex real-time NASBA diagnostics assays were determined to be 100% specific for the target species tested for. Also the Limits of Detection (LODs) for the H. influenzae, N. meningitidis and S. pneumoniae duplex real-time NASBA assays were 55.36, 0.99, and 57.24 Cell Equivalents (CE) respectively. These robust duplex real-time NASBA diagnostics assays have the potential to be used in a clinical setting for the rapid (<60min) specific detection and identification of the most prominent microorganisms associated with bacterial meningitis in humans.


Assuntos
Haemophilus influenzae/isolamento & purificação , Meningites Bacterianas/microbiologia , Neisseria meningitidis/isolamento & purificação , Replicação de Sequência Autossustentável/métodos , Streptococcus pneumoniae/isolamento & purificação , Haemophilus influenzae/genética , Humanos , Limite de Detecção , Meningites Bacterianas/diagnóstico , Meningite por Haemophilus/diagnóstico , Meningite por Haemophilus/microbiologia , Meningite Meningocócica/diagnóstico , Meningite Meningocócica/microbiologia , Meningite Pneumocócica/diagnóstico , Meningite Pneumocócica/microbiologia , Neisseria meningitidis/genética , Sensibilidade e Especificidade , Streptococcus pneumoniae/genética , Proteína de Ligação a TATA-Box/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA