Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Immunol Rev ; 290(1): 24-38, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31355488

RESUMO

The fact that a subset of human cancers showed evidence for a spontaneous adaptive immune response as reflected by the T cell-inflamed tumor microenvironment phenotype led to the search for candidate innate immune pathways that might be driving such endogenous responses. Preclinical studies indicated a major role for the host STING pathway, a cytosolic DNA sensing pathway, as a proximal event required for optimal type I interferon production, dendritic cell activation, and priming of CD8+ T cells against tumor-associated antigens. STING agonists are therefore being developed as a novel cancer therapeutic, and a greater understanding of STING pathway regulation is leading to a broadened list of candidate immune regulatory targets. Early phase clinical trials of intratumoral STING agonists are already showing promise, alone and in combination with checkpoint blockade. Further advancement will derive from a deeper understanding of STING pathway biology as well as mechanisms of response vs resistance in individual cancer patients.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas de Membrana/agonistas , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Biomarcadores , Terapia Combinada , Proteínas de Ligação a DNA/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Imunomodulação/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Neoplasias/diagnóstico , Neoplasias/imunologia , Resultado do Tratamento
2.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38644995

RESUMO

Previous work has shown that innate immune sensing of tumors involves the host STING pathway, which leads to IFN-ß production, dendritic cell (DC) activation, and T cell priming against tumor antigens. This observation has led to the development of STING agonists as a potential cancer therapeutic. However, despite promising results in mouse studies using transplantable tumor models, clinical testing of STING agonists has shown activity in only a minority of patients. Thus, further study of innate immune pathways in anti-tumor immunity is paramount. Innate immune activation in response to a pathogen rarely occurs through stimulation of only one signaling pathway, and activating multiple innate immune pathways similar to a natural infection is one possible strategy to improve the efficacy of STING agonists. To test this, we performed experiments with the STING agonist DMXAA alone or in combination with several TLR agonists. We found that LPS + DMXAA induced significantly greater IFN-ß transcription than the sum of either agonist alone. To explain this synergy, we assayed each step of STING pathway signaling. LPS did not increase STING protein aggregation, IRF3 phosphorylation, or IRF3 nuclear translocation beyond what occurred with DMXAA alone. However, since the IFN-ß promoter also includes NF-κB binding sites, we additionally examined the NF-κB pathway. In fact, LPS increased the phosphorylation and nuclear translocation of the NF-κB subunit p65, and NF-κB signaling was required for the observed synergy. Intratumoral injection of suboptimal doses of LPS + DMXAA resulted in significantly improved tumor control of B16 melanoma in vivo compared to either agonist alone. Our results suggest that combinatorial signaling through TLR4 and STING results in optimal innate signaling via co-involvement of NF-κB and IRF3, and that combined engagement of these two pathways has therapeutic potential.

3.
Cell Rep ; 43(5): 114141, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38656869

RESUMO

The cellular source of positive signals that reinvigorate T cells within the tumor microenvironment (TME) for the therapeutic efficacy of programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) blockade has not been clearly defined. We now show that Batf3-lineage dendritic cells (DCs) are essential in this process. Flow cytometric analysis, gene-targeted mice, and blocking antibody studies revealed that 4-1BBL is a major positive co-stimulatory signal provided by these DCs within the TME that translates to CD8+ T cell functional reinvigoration and tumor regression. Immunofluorescence and spatial transcriptomics on human tumor samples revealed clustering of Batf3+ DCs and CD8+ T cells, which correlates with anti-PD-1 efficacy. In addition, proximity to Batf3+ DCs within the TME is associated with CD8+ T cell transcriptional states linked to anti-PD-1 response. Our results demonstrate that Batf3+ DCs within the TME are critical for PD-1/PD-L1 blockade efficacy and indicate a major role for the 4-1BB/4-1BB ligand (4-1BBL) axis during this process.


Assuntos
Antígeno B7-H1 , Fatores de Transcrição de Zíper de Leucina Básica , Linfócitos T CD8-Positivos , Células Dendríticas , Receptor de Morte Celular Programada 1 , Proteínas Repressoras , Microambiente Tumoral , Animais , Humanos , Camundongos , Ligante 4-1BB/metabolismo , Ligante 4-1BB/genética , Antígeno B7-H1/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Células Dendríticas/metabolismo , Células Dendríticas/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Transdução de Sinais , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
4.
Biopreserv Biobank ; 21(2): 166-175, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35771982

RESUMO

Biobanking during the COVID-19 pandemic presented unique challenges regarding patient enrollment, sample collection, and experimental analysis. This report details the ways in which we rapidly overcame those challenges to create a robust database of clinical information and patient samples while maintaining clinician and researcher safety. We developed a pipeline using REDCap (Research Electronic Data Capture) to coordinate electronic informed consent, sample collection, immunological assay execution, and data analysis for biobanking samples from patients with COVID-19. We then integrated immunological assay data with clinical data extracted from the electronic health record to link study parameters with clinical readouts. Of the 193 inpatients who participated in this study, 138 consented electronically and 56 provided paper consent. We collected and banked blood samples to measure circulating cytokines and chemokines, peripheral immune cell composition and activation status, anti-COVID-19 antibodies, and germline gene polymorphisms. In addition, we collected DNA and RNA from nasopharyngeal swabs to assess viral titer and microbiome composition by 16S sequencing. The rapid spread and contagious nature of COVID-19 required special considerations and innovative solutions to biobank samples quickly while protecting researchers and clinicians. Overall, this workflow and computational pipeline allowed for comprehensive immune profiling of 193 inpatients infected with COVID-19, as well as 89 outpatients, 157 patients receiving curbside COVID-19 testing, and 86 healthy controls. We describe a novel electronic framework for biobanking and analyzing patient samples during COVID-19, and present insights and strategies that can be applied more broadly to other biobank studies.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Bancos de Espécimes Biológicos , Teste para COVID-19 , Pandemias , Consentimento Livre e Esclarecido , Bases de Dados Factuais
5.
J Immunother Cancer ; 10(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35705315

RESUMO

BACKGROUND: A T cell-rich tumor microenvironment has been associated with improved clinical outcome and response to immune checkpoint blockade therapies in several adult cancers. Understanding the mechanisms for lack of immune cell infiltration in tumors is critical for expanding immunotherapy efficacy. To gain new insights into the mechanisms of poor tumor immunogenicity, we turned to pediatric cancers, which are generally unresponsive to checkpoint blockade. METHODS: RNA sequencing and clinical data were obtained for Wilms tumor, rhabdoid tumor, osteosarcoma, and neuroblastoma from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database, and adult cancers from The Cancer Genome Atlas (TCGA). Using an 18-gene tumor inflammation signature (TIS) representing activated CD8+ T cells, we identified genes inversely correlated with the signature. Based on these results, adult tumors were also analyzed, and immunofluorescence was performed on metastatic melanoma samples to assess the MSH2 relationship to anti-programmed cell death protein-1 (PD-1) efficacy. RESULTS: Among the four pediatric cancers, we observed the lowest TIS scores in Wilms tumor. TIS scores were lower in Wilms tumors compared with matched normal kidney tissues, arguing for loss of endogenous T cell infiltration. Pathway analysis of genes upregulated in Wilms tumor and anti-correlated with TIS revealed activated pathways involved DNA repair. The majority of adult tumors in TCGA also showed high DNA repair scores associated with low TIS. Melanoma samples from an independent cohort revealed an inverse correlation between MSH2+ tumor cells and CD8+ T cells. Additionally, melanomas with high MSH2+ tumor cell numbers were largely non-responders to anti-PD-1 therapy. CONCLUSIONS: Increased tumor expression of DNA repair genes is associated with a less robust immune response in Wilms tumor and the majority of TCGA tumor types. Surprisingly, the negative relationship between DNA repair score and TIS remained strong across TCGA when correcting for mutation count, indicating a potential role for DNA repair genes outside of preventing the accumulation of mutations. While loss of DNA repair machinery has been associated with carcinogenesis and mutational antigen generation, our results suggest that hyperexpression of DNA repair genes might be prohibitive for antitumor immunity, arguing for pharmacologic targeting of DNA repair as a potential therapeutic strategy.


Assuntos
Reparo do DNA , Neoplasias Renais , Melanoma , Tumor de Wilms , Adulto , Linfócitos T CD8-Positivos , Criança , Reparo do DNA/genética , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Melanoma/genética , Proteína 2 Homóloga a MutS/genética , Microambiente Tumoral/genética , Tumor de Wilms/tratamento farmacológico , Tumor de Wilms/genética
6.
J Immunother Cancer ; 9(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34593622

RESUMO

A T cell-inflamed tumor microenvironment is characterized by the accumulation and local activation of CD8+ T cells and Bat3-lineage dendritic cells, which together are associated with clinical response to anti-programmed cell death protein 1 (anti-PD-1)-based immunotherapy. Preclinical models have demonstrated a crucial role for the chemokine CXCL10 in the recruitment of effector CD8+ T cells into the tumor site, and a chemokine gene signature is also seen in T cell-inflamed tumors from patients. However, the cellular source of CXCL10 in human solid tumors is not known. To identify the cellular source of CXCL10 we analyzed 22 pretreatment biopsy samples of melanoma metastases from patients who subsequently underwent checkpoint blockade immunotherapy. We stained for CD45+ and Sox10+ cells with multiparameter immunofluorescence staining, and RNA in situ hybridization technology was used in concert to identify CXCL10 transcripts. The results were correlated with the expression levels of CXCL10 transcripts from bulk RNA sequencing and the best overall response to immune checkpoint inhibition (anti-PD-1 alone or with anti-CTLA-4) in the same patients. We identified CD45+ cells as the major cellular source for CXCL10 in human melanoma metastases, with additional CXCL10 production seen by Sox10+ cells. Up to 90% of CD45+ cells and up to 69% of Sox10+ cells produced CXCL10 transcripts. The CXCL10 staining result was consistent with the level of CXCL10 expression determined by bulk RNA sequencing. The percentages of CD45+ CXCL10+ cells and Sox10+ CXCL10+ cells independently predicted response (p<0.001). The average number of transcripts per cell correlated with the CD45+ cell infiltrate (R=0.37). Immune cells and melanoma cells produce CXCL10 in human melanoma metastases. Intratumoral CXCL10 is a positive prognostic factor for response to immunotherapy, and the RNAscope technique is achievable using paraffin tissue. Strategies that support effector T cell recruitment via induction of CXCL10 should be considered as a mechanism-based intervention to expand immunotherapy efficacy.


Assuntos
Quimiocina CXCL10/metabolismo , Imunoterapia/métodos , Melanoma/tratamento farmacológico , Feminino , Humanos , Masculino , Melanoma/genética , Microambiente Tumoral
7.
Res Sq ; 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34845442

RESUMO

The mechanisms explaining progression to severe COVID-19 remain poorly understood. It has been proposed that immune system dysregulation/over-stimulation may be implicated, but it is not clear how such processes would lead to respiratory failure. We performed comprehensive multiparameter immune monitoring in a tightly controlled cohort of 128 COVID-19 patients, and used the ratio of oxygen saturation to fraction of inspired oxygen (SpO2 / FiO2) as a physiologic measure of disease severity. Machine learning algorithms integrating 139 parameters identified IL-6 and CCL2 as two factors predictive of severe disease, consistent with the therapeutic benefit observed with anti-IL6-R antibody treatment. However, transcripts encoding these cytokines were not detected among circulating immune cells. Rather, in situ analysis of lung specimens using RNAscope and immunofluorescent staining revealed that elevated IL-6 and CCL2 were dominantly produced by infected lung type II pneumocytes. Severe disease was not associated with higher viral load, deficient antibody responses, or dysfunctional T cell responses. These results refine our understanding of severe COVID-19 pathophysiology, indicating that aberrant cytokine production by infected lung epithelial cells is a major driver of immunopathology. We propose that these factors cause local immune regulation towards the benefit of the virus.

8.
Clin Pharmacol Ther ; 109(3): 688-696, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33210302

RESUMO

Interleukin-6 (IL-6)-mediated hyperinflammation may contribute to the mortality of coronavirus disease 2019 (COVID-19). The IL-6 receptor-blocking monoclonal antibody tocilizumab has been repurposed for COVID-19, but prospective trials and dose-finding studies in COVID-19 have not yet fully reported. We conducted a single-arm phase II trial of low-dose tocilizumab in nonintubated hospitalized adult patients with COVID-19, radiographic pulmonary infiltrate, fever, and C-reactive protein (CRP) ≥ 40 mg/L. We hypothesized that doses significantly lower than the emerging standards of 400 mg or 8 mg/kg would resolve clinical and laboratory indicators of hyperinflammation. A dose range from 40 to 200 mg was evaluated, with allowance for one repeat dose at 24 to 48 hours. The primary objective was to assess the relationship of dose to fever resolution and CRP response. Thirty-two patients received low-dose tocilizumab, with the majority experiencing fever resolution (75%) and CRP decline consistent with IL-6 pathway abrogation (86%) in the 24-48 hours following drug administration. There was no evidence of a relationship between dose and fever resolution or CRP decline over the dose range of 40-200 mg. Within the 28-day follow-up, 5 (16%) patients died. For patients who recovered, median time to clinical recovery was 3 days (interquartile range, 2-5). Clinically presumed and/or cultured bacterial superinfections were reported in 5 (16%) patients. Low-dose tocilizumab was associated with rapid improvement in clinical and laboratory measures of hyperinflammation in hospitalized patients with COVID-19. Results of this trial provide rationale for a randomized, controlled trial of low-dose tocilizumab in COVID-19.


Assuntos
Anticorpos Monoclonais Humanizados , Proteína C-Reativa/análise , Tratamento Farmacológico da COVID-19 , COVID-19 , Febre , Pneumonia Viral , Idoso , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/efeitos adversos , Anti-Inflamatórios/farmacologia , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/farmacocinética , COVID-19/sangue , COVID-19/fisiopatologia , Relação Dose-Resposta a Droga , Monitoramento de Medicamentos/métodos , Feminino , Febre/diagnóstico , Febre/tratamento farmacológico , Humanos , Masculino , Pneumonia Viral/diagnóstico , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/etiologia , Receptores de Interleucina-6/antagonistas & inibidores , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença , Fatores de Tempo , Resultado do Tratamento
9.
Nat Commun ; 11(1): 602, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32001684

RESUMO

PD-1/PD-L1 blockade can promote robust tumor regression yet secondary resistance often occurs as immune selective pressure drives outgrowth of resistant tumor clones. Here using a genome-wide CRISPR screen in B16.SIY melanoma cells, we confirm Ifngr2 and Jak1 as important genes conferring sensitivity to T cell-mediated killing in vitro. However, when implanted into mice, these Ifngr2- and Jak1-deficient tumors paradoxically are better controlled immunologically. This phenotype maps to defective PD-L1 upregulation on mutant tumor cells, which improves anti-tumor efficacy of CD8+ T cells. To reconcile these observations with clinical reports of anti-PD-1 resistance linked to emergence of IFN-γ signaling mutants, we show that when mixed with wild-type tumor cells, IFN-γ-insensitive tumor cells indeed grow out, which depends upon PD-L1 expression by wild-type cells. Our results illustrate the complexity of functions for IFN-γ in anti-tumor immunity and demonstrate that intratumor heterogeneity and clonal cooperation can contribute to immunotherapy resistance.


Assuntos
Heterogeneidade Genética , Interferon gama/metabolismo , Mutação/genética , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais , Animais , Antígeno B7-H1/metabolismo , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Proliferação de Células , Células Clonais , Citotoxicidade Imunológica , Humanos , Imunomodulação , Linfócitos do Interstício Tumoral/imunologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Linfócitos T/imunologia
10.
medRxiv ; 2020 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-32743594

RESUMO

Background Interleukin-6 (IL-6)-mediated hyperinflammation may contribute to the high mortality of coronavirus disease 2019 (Covid-19). Tocilizumab, an IL-6 receptor blocking monoclonal antibody, has been repurposed for Covid-19, but prospective trials and dose-finding studies in Covid-19 are lacking. Methods We conducted a phase 2 trial of low-dose tocilizumab in hospitalized adult patients with Covid-19, radiographic pulmonary infiltrate, fever, and C-reactive protein (CRP) >= 40 mg/L who did not require mechanical ventilation. Dose cohorts were determined by a trial Operations Committee, stratified by CRP and epidemiologic risk factors. A range of doses from 40 to 200 mg (low-dose tocilizumab) was evaluated, with allowance for one repeat dose at 24-48 hours. The primary objective was to assess the relationship of dose to fever resolution and CRP response. Outcomes were compared with retrospective controls with Covid-19. Correlative studies evaluating host antibody response were performed in parallel. Findings A total of 32 patients received low-dose tocilizumab. This cohort had improved fever resolution (75.0% vs. 34.2%, p = 0.001) and CRP decline (86.2% vs. 14.3%, p < 0.001) in the 24-48 hours following drug administration, as compared to the retrospective controls (N=41). The probabilities of fever resolution or CRP decline did not appear to be dose-related in this small study (p=0.80 and p=0.10, respectively). Within the 28-day follow-up, 5 (15.6%) patients died. For patients who recovered, median time to clinical recovery was 3 days (IQR, 2-5). Clinically presumed and/or cultured bacterial superinfections were reported in 5 (15.6%) patients. Correlative biological studies demonstrated that tocilizumab-treated patients produced anti-SARS-CoV-2 antibodies comparable to controls. Interpretation Low-dose tocilizumab was associated with rapid improvement in clinical and laboratory measures of hyperinflammation in hospitalized patients with Covid-19. Results of this trial and its correlative biological studies provide rationale for a randomized, controlled trial of low-dose tocilizumab in Covid-19.

11.
Science ; 369(6506): 921-922, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32820113

Assuntos
Imunoterapia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA