RESUMO
The 53BP1-RIF1-shieldin pathway maintains genome stability by suppressing nucleolytic degradation of DNA ends at double-strand breaks (DSBs). Although RIF1 interacts with damaged chromatin via phospho-53BP1 and facilitates recruitment of the shieldin complex to DSBs, it is unclear whether other regulatory cues contribute to this response. Here, we implicate methylation of histone H3 at lysine 4 by SETD1A-BOD1L in the recruitment of RIF1 to DSBs. Compromising SETD1A or BOD1L expression or deregulating H3K4 methylation allows uncontrolled resection of DNA ends, impairs end-joining of dysfunctional telomeres, and abrogates class switch recombination. Moreover, defects in RIF1 localization to DSBs are evident in patient cells bearing loss-of-function mutations in SETD1A. Loss of SETD1A-dependent RIF1 recruitment in BRCA1-deficient cells restores homologous recombination and leads to resistance to poly(ADP-ribose)polymerase inhibition, reinforcing the clinical relevance of these observations. Mechanistically, RIF1 binds directly to methylated H3K4, facilitating its recruitment to, or stabilization at, DSBs.
Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a Telômeros , Proteína BRCA1/genética , DNA/metabolismo , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Metilação , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismoRESUMO
Components of the Fanconi anemia and homologous recombination pathways play a vital role in protecting newly replicated DNA from uncontrolled nucleolytic degradation, safeguarding genome stability. Here we report that histone methylation by the lysine methyltransferase SETD1A is crucial for protecting stalled replication forks from deleterious resection. Depletion of SETD1A sensitizes cells to replication stress and leads to uncontrolled DNA2-dependent resection of damaged replication forks. The ability of SETD1A to prevent degradation of these structures is mediated by its ability to catalyze methylation on Lys4 of histone H3 (H3K4) at replication forks, which enhances FANCD2-dependent histone chaperone activity. Suppressing H3K4 methylation or expression of a chaperone-defective FANCD2 mutant leads to loss of RAD51 nucleofilament stability and severe nucleolytic degradation of replication forks. Our work identifies epigenetic modification and histone mobility as critical regulatory mechanisms in maintaining genome stability by restraining nucleases from irreparably damaging stalled replication forks.
Assuntos
DNA/biossíntese , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Nucleossomos/metabolismo , Células A549 , DNA/genética , Replicação do DNA/fisiologia , Epigênese Genética/fisiologia , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Células HeLa , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Humanos , Metilação , Chaperonas Moleculares/genética , Nucleossomos/genética , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismoRESUMO
Diffuse large B-cell lymphoma (DLBCL) is the most common malignancy that develops in patients with ataxia-telangiectasia, a cancer-predisposing inherited syndrome characterized by inactivating germline ATM mutations. ATM is also frequently mutated in sporadic DLBCL. To investigate lymphomagenic mechanisms and lymphoma-specific dependencies underlying defective ATM, we applied ribonucleic acid (RNA)-seq and genome-scale loss-offunction clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 screens to systematically interrogate B-cell lymphomas arising in a novel murine model (Atm-/-nu-/-) with constitutional Atm loss, thymic aplasia but residual T-cell populations. Atm-/-nu-/-lymphomas, which phenotypically resemble either activated B-cell-like or germinal center Bcell-like DLBCL, harbor a complex karyotype, and are characterized by MYC pathway activation. In Atm-/-nu-/-lymphomas, we discovered nucleotide biosynthesis as a MYCdependent cellular vulnerability that can be targeted through the synergistic nucleotidedepleting actions of mycophenolate mofetil (MMF) and the WEE1 inhibitor, adavosertib (AZD1775). The latter is mediated through a synthetically lethal interaction between RRM2 suppression and MYC dysregulation that results in replication stress overload in Atm-/-nu-/-lymphoma cells. Validation in cell line models of human DLBCL confirmed the broad applicability of nucleotide depletion as a therapeutic strategy for MYC-driven DLBCL independent of ATM mutation status. Our findings extend current understanding of lymphomagenic mechanisms underpinning ATM loss and highlight nucleotide metabolism as a targetable therapeutic vulnerability in MYC-driven DLBCL.
RESUMO
Recognition and repair of damaged replication forks are essential to maintain genome stability and are coordinated by the combined action of the Fanconi anemia and homologous recombination pathways. These pathways are vital to protect stalled replication forks from uncontrolled nucleolytic activity, which otherwise causes irreparable genomic damage. Here, we identify BOD1L as a component of this fork protection pathway, which safeguards genome stability after replication stress. Loss of BOD1L confers exquisite cellular sensitivity to replication stress and uncontrolled resection of damaged replication forks, due to a failure to stabilize RAD51 at these forks. Blocking DNA2-dependent resection, or downregulation of the helicases BLM and FBH1, suppresses both catastrophic fork processing and the accumulation of chromosomal damage in BOD1L-deficient cells. Thus, our work implicates BOD1L as a critical regulator of genome integrity that restrains nucleolytic degradation of damaged replication forks.
Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Linhagem Celular , Sobrevivência Celular , Dano ao DNA , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Genoma Humano , Instabilidade Genômica , Células HeLa , Humanos , RecQ Helicases/metabolismoRESUMO
SPONASTRIME dysplasia is a rare, recessive skeletal dysplasia characterized by short stature, facial dysmorphism, and aberrant radiographic findings of the spine and long bone metaphysis. No causative genetic alterations for SPONASTRIME dysplasia have yet been determined. Using whole-exome sequencing (WES), we identified bi-allelic TONSL mutations in 10 of 13 individuals with SPONASTRIME dysplasia. TONSL is a multi-domain scaffold protein that interacts with DNA replication and repair factors and which plays critical roles in resistance to replication stress and the maintenance of genome integrity. We show here that cellular defects in dermal fibroblasts from affected individuals are complemented by the expression of wild-type TONSL. In addition, in vitro cell-based assays and in silico analyses of TONSL structure support the pathogenicity of those TONSL variants. Intriguingly, a knock-in (KI) Tonsl mouse model leads to embryonic lethality, implying the physiological importance of TONSL. Overall, these findings indicate that genetic variants resulting in reduced function of TONSL cause SPONASTRIME dysplasia and highlight the importance of TONSL in embryonic development and postnatal growth.
Assuntos
Fibroblastos/patologia , Genes Letais , Mutação , NF-kappa B/genética , Osteocondrodisplasias/patologia , Adolescente , Adulto , Animais , Células Cultivadas , Criança , Pré-Escolar , Dano ao DNA , Derme/metabolismo , Derme/patologia , Feminino , Fibroblastos/metabolismo , Humanos , Lactente , Recém-Nascido , Camundongos , Camundongos Endogâmicos C57BL , Osteocondrodisplasias/genética , Sequenciamento do Exoma/métodos , Adulto JovemRESUMO
SPONASTRIME dysplasia is an autosomal-recessive spondyloepimetaphyseal dysplasia characterized by spine (spondylar) abnormalities, midface hypoplasia with a depressed nasal bridge, metaphyseal striations, and disproportionate short stature. Scoliosis, coxa vara, childhood cataracts, short dental roots, and hypogammaglobulinemia have also been reported in this disorder. Although an autosomal-recessive inheritance pattern has been hypothesized, pathogenic variants in a specific gene have not been discovered in individuals with SPONASTRIME dysplasia. Here, we identified bi-allelic variants in TONSL, which encodes the Tonsoku-like DNA repair protein, in nine subjects (from eight families) with SPONASTRIME dysplasia, and four subjects (from three families) with short stature of varied severity and spondylometaphyseal dysplasia with or without immunologic and hematologic abnormalities, but no definitive metaphyseal striations at diagnosis. The finding of early embryonic lethality in a Tonsl-/- murine model and the discovery of reduced length, spinal abnormalities, reduced numbers of neutrophils, and early lethality in a tonsl-/- zebrafish model both support the hypomorphic nature of the identified TONSL variants. Moreover, functional studies revealed increased amounts of spontaneous replication fork stalling and chromosomal aberrations, as well as fewer camptothecin (CPT)-induced RAD51 foci in subject-derived cell lines. Importantly, these cellular defects were rescued upon re-expression of wild-type (WT) TONSL; this rescue is consistent with the hypothesis that hypomorphic TONSL variants are pathogenic. Overall, our studies in humans, mice, zebrafish, and subject-derived cell lines confirm that pathogenic variants in TONSL impair DNA replication and homologous recombination-dependent repair processes, and they lead to a spectrum of skeletal dysplasia phenotypes with numerous extra-skeletal manifestations.
Assuntos
Instabilidade Cromossômica , Dano ao DNA , Variação Genética , Anormalidades Musculoesqueléticas/patologia , NF-kappa B/genética , Osteocondrodisplasias/patologia , Adolescente , Adulto , Alelos , Animais , Células Cultivadas , Criança , Pré-Escolar , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Estudos de Associação Genética , Humanos , Camundongos , Camundongos Knockout , Anormalidades Musculoesqueléticas/genética , Osteocondrodisplasias/genética , Sequenciamento do Exoma , Adulto Jovem , Peixe-ZebraRESUMO
Defects in histone methyltransferases (HMTs) are major contributing factors in neurodevelopmental disorders (NDDs). Heterozygous variants of SETD1A involved in histone H3 lysine 4 (H3K4) methylation were previously identified in individuals with schizophrenia. Here, we define the clinical features of the Mendelian syndrome associated with haploinsufficiency of SETD1A by investigating 15 predominantly pediatric individuals who all have de novo SETD1A variants. These individuals present with a core set of symptoms comprising global developmental delay and/or intellectual disability, subtle facial dysmorphisms, behavioral and psychiatric problems. We examined cellular phenotypes in three patient-derived lymphoblastoid cell lines with three variants: p.Gly535Alafs*12, c.4582-2_4582delAG, and p.Tyr1499Asp. These patient cell lines displayed DNA damage repair defects that were comparable to previously observed RNAi-mediated depletion of SETD1A. This suggested that these variants, including the p.Tyr1499Asp in the catalytic SET domain, behave as loss-of-function (LoF) alleles. Previous studies demonstrated a role for SETD1A in cell cycle control and differentiation. However, individuals with SETD1A variants do not show major structural brain defects or severe microcephaly, suggesting that defective proliferation and differentiation of neural progenitors is unlikely the single underlying cause of the disorder. We show here that the Drosophila melanogaster SETD1A orthologue is required in postmitotic neurons of the fly brain for normal memory, suggesting a role in post development neuronal function. Together, this study defines a neurodevelopmental disorder caused by dominant de novo LoF variants in SETD1A and further supports a role for H3K4 methyltransferases in the regulation of neuronal processes underlying normal cognitive functioning.
Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Criança , Drosophila , Drosophila melanogaster , Haploinsuficiência/genética , Histona-Lisina N-Metiltransferase/genética , Humanos , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genéticaRESUMO
Virus-related type 2 diabetes is commonly observed in individuals infected with the hepatitis C virus (HCV); however, the underlying molecular mechanisms remain unknown. Our aim was to unravel these mechanisms using FL-N/35 transgenic mice expressing the full HCV ORF. We observed that these mice displayed glucose intolerance and insulin resistance. We also found that Glut-2 membrane expression was reduced in FL-N/35 mice and that hepatocyte glucose uptake was perturbed, partly accounting for the HCV-induced glucose intolerance in these mice. Early steps of the hepatic insulin signaling pathway, from IRS2 to PDK1 phosphorylation, were constitutively impaired in FL-N/35 primary hepatocytes via deregulation of TNFα/SOCS3. Higher hepatic glucose production was observed in the HCV mice, despite higher fasting insulinemia, concomitant with decreased expression of hepatic gluconeogenic genes. Akt kinase activity was higher in HCV mice than in WT mice, but Akt-dependent phosphorylation of the forkhead transcription factor FoxO1 at serine 256, which triggers its nuclear exclusion, was lower in HCV mouse livers. These findings indicate an uncoupling of the canonical Akt/FoxO1 pathway in HCV protein-expressing hepatocytes. Thus, the expression of HCV proteins in the liver is sufficient to induce insulin resistance by impairing insulin signaling and glucose uptake. In conclusion, we observed a complete set of events leading to a prediabetic state in HCV-transgenic mice, providing a valuable mechanistic explanation for HCV-induced diabetes in humans.
Assuntos
Hepacivirus/patogenicidade , Hepatite C/fisiopatologia , Hepatócitos/virologia , Resistência à Insulina , Estado Pré-Diabético/etiologia , Absorção Fisiológica , Animais , Linhagem Celular Tumoral , Células Cultivadas , Regulação da Expressão Gênica , Gluconeogênese , Glucose/metabolismo , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatite C/metabolismo , Hepatite C/patologia , Hepatite C/virologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Masculino , Camundongos Transgênicos , Músculo Estriado/metabolismo , Músculo Estriado/virologia , Fases de Leitura Aberta , Fosforilação , Estado Pré-Diabético/virologia , Processamento de Proteína Pós-Traducional , RNA/metabolismo , Organismos Livres de Patógenos Específicos , Proteínas Virais/genética , Proteínas Virais/metabolismoRESUMO
Chronic infections by the hepatotropic viruses hepatitis B virus (HBV) and hepatitis C virus (HCV) are major risk factors for the development of hepatocellular carcinoma (HCC). It is estimated that more than 700,000 individuals per year die from HCC, and around 80â% of HCC is attributable to HBV or HCV infection. Despite the clear clinical importance of virus-associated HCC, the underlying molecular mechanisms remain largely elusive. Oxidative stress, in particular DNA lesions associated with oxidative damage, play a major contributory role in carcinogenesis, and are strongly linked to the development of many cancers, including HCC. A large body of evidence demonstrates that both HBV and HCV induce hepatic oxidative stress, with increased oxidative DNA damage being observed both in infected individuals and in murine models of infection. Here, we review the impact of HBV and HCV on the incidence and repair of oxidative DNA damage. We begin by giving a brief overview of oxidative stress and the repair of DNA lesions induced by oxidative stress. We then review in detail the evidence surrounding the mechanisms by which both viruses stimulate oxidative stress, before focusing on how the viral proteins themselves may perturb the cellular response to oxidative DNA damage, impacting upon genome stability and thus hepatocarcinogenesis.
Assuntos
Carcinoma Hepatocelular/virologia , Dano ao DNA , Hepatite B Crônica/complicações , Hepatite C Crônica/complicações , Neoplasias Hepáticas/virologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/toxicidade , Animais , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Hepatite B Crônica/patologia , Hepatite C Crônica/patologia , Humanos , Neoplasias Hepáticas/patologia , CamundongosRESUMO
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is involved in regulating viral replication through its direct interaction with the HCV RNA-dependent RNA polymerase. NS5A also alters infected cell metabolism through complex interactions with numerous host cell proteins. NS5A has furthermore been suggested to act as a transcriptional activator, although the impact on viral replication is unclear. To study this, HCV NS5A variants were amplified from hepatic tissue from an HCV-infected patient, and their abilities to activate gene transcription were analyzed in a single-hybrid yeast (Saccharomyces cerevisiae) model. Different variants isolated from the same patient displayed different transactivational activities. When these variants were inserted into the HCV subgenomic replicon system, they demonstrated various levels of RNA replication, which correlated with their transactivational activities. We showed that the C-terminal fragment of NS5A was localized to the nucleus and that a functional NS5A nuclear localization signal and cellular caspase activity were required for this process. Furthermore, nuclear localization of NS5A was necessary for viral replication. Finally, we demonstrate that nuclear NS5A binds to host cell promoters of several genes previously identified as important for efficient HCV RNA replication, inducing their transcription. Taken together, these results demonstrate a new mechanism by which HCV modulates its cellular environment, thereby enhancing viral replication.
Assuntos
Hepacivirus/fisiologia , Interações Hospedeiro-Patógeno , Ativação Transcricional , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Idoso de 80 Anos ou mais , Núcleo Celular/química , Hepacivirus/genética , Hepacivirus/isolamento & purificação , Hepacivirus/patogenicidade , Hepatite C Crônica/virologia , Humanos , Masculino , Sinais de Localização Nuclear , Regiões Promotoras Genéticas , Ligação Proteica , Saccharomyces cerevisiae/genética , Proteínas não Estruturais Virais/genéticaRESUMO
Cancer cells are often aneuploid and frequently display elevated rates of chromosome missegregation in a phenomenon called chromosomal instability (CIN). CIN is commonly caused by hyperstable kinetochore-microtubule (K-MT) attachments that reduces the efficiency of correction of erroneous K-MT attachments. We recently showed that UMK57, a chemical agonist of MCAK (alias KIF2C) improves chromosome segregation fidelity in CIN cancer cells although cells rapidly develop adaptive resistance. To determine the mechanism of resistance we performed unbiased proteomic screens which revealed increased phosphorylation in cells adapted to UMK57 at two Aurora kinase A phosphoacceptor sites on BOD1L1 (alias FAM44A). BOD1L1 depletion or Aurora kinase A inhibition eliminated resistance to UMK57 in CIN cancer cells. BOD1L1 localizes to spindles/kinetochores during mitosis, interacts with the PP2A phosphatase, and regulates phosphorylation levels of kinetochore proteins, chromosome alignment, mitotic progression and fidelity. Moreover, the BOD1L1 gene is mutated in a subset of human cancers, and BOD1L1 depletion reduces cell growth in combination with clinically relevant doses of taxol or Aurora kinase A inhibitor. Thus, an Aurora kinase A -BOD1L1-PP2A axis promotes faithful chromosome segregation during mitosis.
RESUMO
The clinical treatment of DNA-repair defective tumours has been revolutionised by the use of poly(ADP) ribose polymerase (PARP) inhibitors. However, the efficacy of these compounds is hampered by resistance, which is attributed to numerous mechanisms including rewiring of the DNA damage response to favour pathways that repair PARP inhibitor-mediated damage. Here, we comment on recent findings by our group identifying the lysine methyltransferase SETD1A as a novel factor that conveys PARPi resistance. We discuss the implications, with a particular focus on epigenetic modifications and H3K4 methylation. We also deliberate on the mechanisms responsible, the consequences for the refinement of PARP inhibitor use in the clinic, and future possibilities to circumvent drug resistance in DNA-repair deficient cancers.
RESUMO
Inherited bone marrow failure associated with heterozygous mutations in GATA2 predisposes toward hematological malignancies, but the mechanisms remain poorly understood. Here, we investigate the mechanistic basis of marrow failure in a zebrafish model of GATA2 deficiency. Single-cell transcriptomics and chromatin accessibility assays reveal that loss of gata2a leads to skewing toward the erythroid lineage at the expense of myeloid cells, associated with loss of cebpa expression and decreased PU.1 and CEBPA transcription factor accessibility in hematopoietic stem and progenitor cells (HSPCs). Furthermore, gata2a mutants show impaired expression of npm1a, the zebrafish NPM1 ortholog. Progressive loss of npm1a in HSPCs is associated with elevated levels of DNA damage in gata2a mutants. Thus, Gata2a maintains myeloid lineage priming through cebpa and protects against genome instability and marrow failure by maintaining expression of npm1a. Our results establish a potential mechanism underlying bone marrow failure in GATA2 deficiency.
Assuntos
Medula Óssea , Deficiência de GATA2 , Animais , Medula Óssea/metabolismo , Transtornos da Insuficiência da Medula Óssea , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Instabilidade Genômica , Peixe-Zebra/metabolismoRESUMO
While the toxicity of PARP inhibitors to cells with defects in homologous recombination (HR) is well established, other synthetic lethal interactions with PARP1/PARP2 disruption are poorly defined. To inform on these mechanisms we conducted a genome-wide screen for genes that are synthetic lethal with PARP1/2 gene disruption and identified C16orf72/HAPSTR1/TAPR1 as a novel modulator of replication-associated R-loops. C16orf72 is critical to facilitate replication fork restart, suppress DNA damage and maintain genome stability in response to replication stress. Importantly, C16orf72 and PARP1/2 function in parallel pathways to suppress DNA:RNA hybrids that accumulate at stalled replication forks. Mechanistically, this is achieved through an interaction of C16orf72 with BRCA1 and the RNA/DNA helicase Senataxin to facilitate their recruitment to RNA:DNA hybrids and confer resistance to PARP inhibitors. Together, this identifies a C16orf72/Senataxin/BRCA1-dependent pathway to suppress replication-associated R-loop accumulation, maintain genome stability and confer resistance to PARP inhibitors.
Assuntos
Proteína BRCA1 , Inibidores de Poli(ADP-Ribose) Polimerases , Estruturas R-Loop , Dano ao DNA , DNA Helicases/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Estruturas R-Loop/genética , RNA , Proteína BRCA1/genética , Peptídeos e Proteínas de Sinalização Intracelular/genéticaRESUMO
Although protein hydroxylation is a relatively poorly characterized posttranslational modification, it has received significant recent attention following seminal work uncovering its role in oxygen sensing and hypoxia biology. Although the fundamental importance of protein hydroxylases in biology is becoming clear, the biochemical targets and cellular functions often remain enigmatic. JMJD5 is a "JmjC-only" protein hydroxylase that is essential for murine embryonic development and viability. However, no germline variants in JmjC-only hydroxylases, including JMJD5, have yet been described that are associated with any human pathology. Here we demonstrate that biallelic germline JMJD5 pathogenic variants are deleterious to JMJD5 mRNA splicing, protein stability, and hydroxylase activity, resulting in a human developmental disorder characterized by severe failure to thrive, intellectual disability, and facial dysmorphism. We show that the underlying cellular phenotype is associated with increased DNA replication stress and that this is critically dependent on the protein hydroxylase activity of JMJD5. This work contributes to our growing understanding of the role and importance of protein hydroxylases in human development and disease.
Assuntos
Histona Desmetilases , Oxigenases de Função Mista , Humanos , Animais , Camundongos , Histona Desmetilases/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Processamento de Proteína Pós-TraducionalRESUMO
WDR5 is a broadly studied, highly conserved key protein involved in a wide array of biological functions. Among these functions, WDR5 is a part of several protein complexes that affect gene regulation via post-translational modification of histones. We collected data from 11 unrelated individuals with six different rare de novo germline missense variants in WDR5; one identical variant was found in five individuals and another variant in two individuals. All individuals had neurodevelopmental disorders including speech/language delays (n = 11), intellectual disability (n = 9), epilepsy (n = 7), and autism spectrum disorder (n = 4). Additional phenotypic features included abnormal growth parameters (n = 7), heart anomalies (n = 2), and hearing loss (n = 2). Three-dimensional protein structures indicate that all the residues affected by these variants are located at the surface of one side of the WDR5 protein. It is predicted that five out of the six amino acid substitutions disrupt interactions of WDR5 with RbBP5 and/or KMT2A/C, as part of the COMPASS (complex proteins associated with Set1) family complexes. Our experimental approaches in Drosophila melanogaster and human cell lines show normal protein expression, localization, and protein-protein interactions for all tested variants. These results, together with the clustering of variants in a specific region of WDR5 and the absence of truncating variants so far, suggest that dominant-negative or gain-of-function mechanisms might be at play. All in all, we define a neurodevelopmental disorder associated with missense variants in WDR5 and a broad range of features. This finding highlights the important role of genes encoding COMPASS family proteins in neurodevelopmental disorders.
Assuntos
Transtorno do Espectro Autista , Proteínas de Drosophila , Transtornos do Desenvolvimento da Linguagem , Transtornos do Neurodesenvolvimento , Animais , Humanos , Transtorno do Espectro Autista/genética , Drosophila melanogaster/genética , Transtornos do Neurodesenvolvimento/genética , Análise por Conglomerados , Cromatina , Peptídeos e Proteínas de Sinalização Intracelular/genética , Histona-Lisina N-Metiltransferase/genética , Proteínas de Drosophila/genéticaRESUMO
Embryonic development is dictated by tight regulation of DNA replication, cell division and differentiation. Mutations in DNA repair and replication genes disrupt this equilibrium, giving rise to neurodevelopmental disease characterized by microcephaly, short stature and chromosomal breakage. Here, we identify biallelic variants in two components of the RAD18-SLF1/2-SMC5/6 genome stability pathway, SLF2 and SMC5, in 11 patients with microcephaly, short stature, cardiac abnormalities and anemia. Patient-derived cells exhibit a unique chromosomal instability phenotype consisting of segmented and dicentric chromosomes with mosaic variegated hyperploidy. To signify the importance of these segmented chromosomes, we have named this disorder Atelís (meaning - incomplete) Syndrome. Analysis of Atelís Syndrome cells reveals elevated levels of replication stress, partly due to a reduced ability to replicate through G-quadruplex DNA structures, and also loss of sister chromatid cohesion. Together, these data strengthen the functional link between SLF2 and the SMC5/6 complex, highlighting a distinct role for this pathway in maintaining genome stability.
Assuntos
Proteínas de Ciclo Celular , Microcefalia , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Microcefalia/genética , Reparo do DNA/genética , Cromossomos/metabolismo , Instabilidade Genômica , Proteínas de Ligação a DNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Cromossômicas não Histona/metabolismoRESUMO
As transcription and replication use DNA as substrate, conflicts between transcription and replication can occur, leading to genome instability with direct consequences for human health. To determine how the two processes are coordinated throughout S phase, we characterize both processes together at high resolution. We find that transcription occurs during DNA replication, with transcription start sites (TSSs) not fully replicated along with surrounding regions and remaining under-replicated until late in the cell cycle. TSSs undergo completion of DNA replication specifically when cells enter mitosis, when RNA polymerase II is removed. Intriguingly, G2/M DNA synthesis occurs at high frequency in unperturbed cell culture, but it is not associated with increased DNA damage and is fundamentally separated from mitotic DNA synthesis. TSSs duplicated in G2/M are characterized by a series of specific features, including high levels of antisense transcription, making them difficult to duplicate during S phase.
Assuntos
Divisão Celular/genética , Replicação do DNA/genética , Fase G2/genética , RNA/genética , Sítio de Iniciação de Transcrição/fisiologia , HumanosRESUMO
Chronic hepatitis C virus (HCV) infection is associated with altered lipid metabolism and hepatocellular steatosis. Virus-induced steatosis is a cytopathic effect of HCV replication. The goal of this study was to examine the mechanisms underlying HCV-induced lipid metabolic defects in a transgenic mouse model expressing the full HCV protein repertoire at levels corresponding to natural human infection. In this model, expression of the HCV full-length open reading frame was associated with hepatocellular steatosis and reduced plasma triglyceride levels. Triglyceride secretion was impaired, whereas lipogenesis was activated. Increased lipogenic enzyme transcription was observed, resulting from maturational activation and nuclear translocation of sterol regulatory element-binding protein 1c (SREBP1c). However, endoplasmic reticulum (ER) stress markers were expressed at similar levels in both HCV transgenic mice and their wild type counterparts, suggesting that SREBP1c proteolytic cleavage in the presence of HCV proteins was independent of ER stress. In conclusion, transgenic mice expressing the HCV full-length polyprotein at low levels have decreased plasma triglyceride levels and develop hepatocellular steatosis in the same way as HCV-infected patients. In these mice, SREBP1c activation by one or several HCV proteins induces de novo triglyceride synthesis via the lipogenic pathway, in a manner independent of ER stress, whereas triglyceride secretion is simultaneously reduced.
Assuntos
Hepacivirus/metabolismo , Lipogênese/fisiologia , Triglicerídeos/metabolismo , Proteínas Virais/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Fígado Gorduroso/sangue , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Hepacivirus/genética , Hepatite C/sangue , Hepatite C/complicações , Hepatite C/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Triglicerídeos/sangue , Proteínas Virais/genéticaRESUMO
The UL33 protein of herpes simplex virus type 1 (HSV-1) is thought to be a component of the terminase complex that mediates the cleavage and packaging of viral DNA. In this study we describe the generation and characterization of a series of 15 UL33 mutants containing insertions of five amino acids located randomly throughout the 130-residue protein. Of these mutants, seven were unable to complement the growth of the UL33-null virus dlUL33 in transient assays and also failed to support the cleavage and packaging of replicated amplicon DNA into capsids. The insertions in these mutants were clustered between residues 51 and 74 and between 104 and 116, within the most highly conserved regions of the protein. The ability of the mutants to interact with the UL28 component of the terminase was assessed in immunoprecipitation and immunofluorescence assays. All four mutants with insertions between amino acids 51 and 74 were impaired in this interaction, whereas two of the three mutants in the second region (with insertions at positions 111 and 116) were not affected. These data indicate that the ability of UL33 to interact with UL28 is probably necessary, but not sufficient, to support viral growth and DNA packaging.